1
|
Sousa CSV, Peng M, Guerreiro PM, Cardoso JCR, Chen L, Canário AVM, Power DM. Differential tissue immune stimulation through immersion in bacterial and viral agonists in the Antarctic Notothenia rossii. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109516. [PMID: 38548189 DOI: 10.1016/j.fsi.2024.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
The genome evolution of Antarctic notothenioids has been modulated by their extreme environment over millennia and more recently by human-caused constraints such as overfishing and climate change. Here we investigated the characteristics of the immune system in Notothenia rossii and how it responds to 8 h immersion in viral (Poly I:C, polyinosinic: polycytidylic acid) and bacterial (LPS, lipopolysaccharide) proxies. Blood plasma antiprotease activity and haematocrit were reduced in Poly I:C-treated fish only, while plasma protein, lysozyme activity and cortisol were unchanged with both treatments. The skin and duodenum transcriptomes responded strongly to the treatments, unlike the liver and spleen which had a mild response. Furthermore, the skin transcriptome responded most to the bacterial proxy (cell adhesion, metabolism and immune response processes) and the duodenum (metabolism, response to stress, regulation of intracellular signal transduction, and immune system responses) to the viral proxy. The differential tissue response to the two proxy challenges is indicative of immune specialisation of the duodenum and the skin towards pathogens. NOD-like and C-type lectin receptors may be central in recognising LPS and Poly I:C. Other antimicrobial compounds such as iron and selenium-related genes are essential defence mechanisms to protect the host from sepsis. In conclusion, our study revealed a specific response of two immune barrier tissue, the skin and duodenum, in Notothenia rossii when exposed to pathogen proxies by immersion, and this may represent an adaptation to pathogen infective strategies.
Collapse
Affiliation(s)
- Cármen S V Sousa
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maoxiao Peng
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Pedro M Guerreiro
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João C R Cardoso
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Adelino V M Canário
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Park BJ, Yoon YB, Park SC, Shin GS, Kwak HJ, Lee DH, Choi MY, Kim JW, Cho SJ. Multiple toll-like receptors (TLRs) display differential bacterial and ligand specificity in the earthworm, Eisenia andrei. J Invertebr Pathol 2023; 201:108010. [PMID: 37865158 DOI: 10.1016/j.jip.2023.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.
Collapse
Affiliation(s)
- Beom Jun Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yoo Bin Yoon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon Cheol Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Geun-Seup Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee-Jin Kwak
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Dong Ho Lee
- College of General Education, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Min Young Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
4
|
Rao SS, Lunde HS, Dolan DWP, Fond AK, Petersen K, Haugland GT. Transcriptome-wide analyses of early immune responses in lumpfish leukocytes upon stimulation with poly(I:C). Front Immunol 2023; 14:1198211. [PMID: 37388730 PMCID: PMC10300353 DOI: 10.3389/fimmu.2023.1198211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Background Both bacterial and viral diseases are a major threat to farmed fish. As the antiviral immune mechanisms in lumpfish (Cyclopterus lumpus L.) are poorly understood, lumpfish leukocytes were stimulated with poly(I:C), a synthetic analog of double stranded RNA, which mimic viral infections, and RNA sequencing was performed. Methods To address this gap, we stimulated lumpfish leukocytes with poly(I:C) for 6 and 24 hours and did RNA sequencing with three parallels per timepoint. Genome guided mapping was performed to define differentially expressed genes (DEGs). Results Immune genes were identified, and transcriptome-wide analyses of early immune responses showed that 376 and 2372 transcripts were significantly differentially expressed 6 and 24 hours post exposure (hpe) to poly(I:C), respectively. The most enriched GO terms when time had been accounted for, were immune system processes (GO:0002376) and immune response (GO:0006955). Analysis of DEGs showed that among the most highly upregulated genes were TLRs and genes belonging to the RIG-I signaling pathway, including LGP2, STING and MX, as well as IRF3 and IL12A. RIG-I was not identified, but in silico analyses showed that genes encoding proteins involved in pathogen recognition, cell signaling, and cytokines of the TLR and RIG-I signaling pathway are mostly conserved in lumpfish when compared to mammals and other teleost species. Conclusions Our analyses unravel the innate immune pathways playing a major role in antiviral defense in lumpfish. The information gathered can be used in comparative studies and lay the groundwork for future functional analyses of immune and pathogenicity mechanisms. Such knowledge is also necessary for the development of immunoprophylactic measures for lumpfish, which is extensively cultivated for use as cleaner fish in the aquaculture for removal of sea lice from Atlantic salmon (Salmo salar L.).
Collapse
Affiliation(s)
- Shreesha S. Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S. Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - David W. P. Dolan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Amanda K. Fond
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Gyri T. Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Pathogens 2023; 12:pathogens12010092. [PMID: 36678440 PMCID: PMC9866513 DOI: 10.3390/pathogens12010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors (TLRs), as a family of pattern recognition receptors, play an important role in the recognition of HIV-1 molecular structures by various cells of the innate immune system, but also provide a functional association with subsequent mechanisms of adaptive immunity. TLR7 and TLR8 play a particularly important role in the innate immune response to RNA viruses due to their ability to recognise GU-rich single-stranded RNA molecules and subsequently activate intracellular signalling pathways resulting in expression of genes coding for various biological response modifiers (interferons, proinflammatory cytokines, chemokines). The aim of this review is to summarise the most recent knowledge on the role of TLRs in the innate immune response to HIV-1 and the role of TLR gene polymorphisms in the biology and in the clinical aspects of HIV infections. In addition, the role of TLR agonists as latency reversing agents in research to treat HIV infections and as immunomodulators in HIV vaccine research will be discussed.
Collapse
|
6
|
Wu Y, Xiao Y, Xiao Z, Ma Y, Zhao H, Gao G, Li J. Genome-Wide Scan Reveals Toll-Like Receptor Contraction Events in Oplegnathidae. DNA Cell Biol 2022; 41:879-892. [DOI: 10.1089/dna.2022.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Innate Immunity Mechanisms in Marine Multicellular Organisms. Mar Drugs 2022; 20:md20090549. [PMID: 36135738 PMCID: PMC9505182 DOI: 10.3390/md20090549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
The innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates. Study of the interactions of the most ancient marine multicellular organisms with microorganisms gives us an idea of the evolution of molecular mechanisms of protection against pathogens and reveals new functions of already known proteins in ensuring the body’s homeostasis. The review discusses innate immunity mechanisms of protection of marine invertebrate organisms against infections, using the examples of ancient multicellular hydroids, tunicates, echinoderms, and marine worms in the context of searching for analogies with vertebrate innate immunity. Due to the fact that mucous membranes first arose in marine invertebrates that have existed for several hundred million years, study of their innate immune system is both of fundamental importance in terms of understanding molecular mechanisms of host defense, and of practical application, including the search of new antimicrobial agents for subsequent use in medicine, veterinary and biotechnology.
Collapse
|