1
|
Hughes DM, Won T, Talor MV, Kalinoski HM, Jurčová I, Szárszoi O, Stříž I, Čurnová L, Bracamonte-Baran W, Melenovský V, Čiháková D. The protective role of GATA6 + pericardial macrophages in pericardial inflammation. iScience 2024; 27:110244. [PMID: 39040070 PMCID: PMC11260870 DOI: 10.1016/j.isci.2024.110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.
Collapse
Affiliation(s)
- David M. Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monica V. Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M. Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ivana Jurčová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ondrej Szárszoi
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ilja Stříž
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lenka Čurnová
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Stumpff JP, Kim SY, McFadden MI, Nishida A, Shirazi R, Steuerman Y, Gat-Viks I, Forero A, Nair MG, Morrison J. Pleural macrophages translocate to the lung during infection to promote improved influenza outcomes. Proc Natl Acad Sci U S A 2023; 120:e2300474120. [PMID: 38100417 PMCID: PMC10743374 DOI: 10.1073/pnas.2300474120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Seasonal influenza results in 3 to 5 million cases of severe disease and 250,000 to 500,000 deaths annually. Macrophages have been implicated in both the resolution and progression of the disease, but the drivers of these outcomes are poorly understood. We probed mouse lung transcriptomic datasets using the Digital Cell Quantifier algorithm to predict immune cell subsets that correlated with mild or severe influenza A virus (IAV) infection outcomes. We identified a unique lung macrophage population that transcriptionally resembled small serosal cavity macrophages and whose presence correlated with mild disease. Until now, the study of serosal macrophage translocation in the context of viral infections has been neglected. Here, we show that pleural macrophages (PMs) migrate from the pleural cavity to the lung after infection with IAV. We found that the depletion of PMs increased morbidity and pulmonary inflammation. There were increased proinflammatory cytokines in the pleural cavity and an influx of neutrophils within the lung. Our results show that PMs are recruited to the lung during IAV infection and contribute to recovery from influenza. This study expands our knowledge of PM plasticity and identifies a source of lung macrophages independent of monocyte recruitment and local proliferation.
Collapse
Affiliation(s)
- James P. Stumpff
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA92521
| | - Matthew I. McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA98109
| | - Roksana Shirazi
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Yael Steuerman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA92521
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| |
Collapse
|
3
|
Zhang K, Chen X, Zhou R, Chen Z, Wu B, Qiu W, Fang F. Inhibition of gingival fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis. J Clin Periodontol 2023; 50:1264-1279. [PMID: 37366309 DOI: 10.1111/jcpe.13841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
AIM Necroptosis participates in the pathogenesis of many inflammatory diseases, including periodontitis. Here, we aimed to investigate the role and mechanism of necroptosis inhibitors in attenuating periodontitis. MATERIALS AND METHODS The Gene Expression Omnibus (GEO) dataset GSE164241 was re-analysed to identify the role of necroptosis in periodontitis. Gingival specimens from healthy subjects or periodontitis patients were collected to evaluate the expression level of necroptosis-associated proteins. The therapeutic effect of necroptosis inhibitors on periodontitis was assessed in vivo and in vitro. Moreover, Transwell assays and Western blotting and siRNA transfection were used to identify the effects of necroptotic human gingival fibroblasts (hGFs) on THP-1 macrophages. RESULTS Re-analysis revealed that gingival fibroblasts (GFs) in periodontitis gingiva showed the highest area under the curve score of necroptosis. Elevated levels of necroptosis-associated proteins were identified in GFs in periodontitis gingiva collected from patients and mice. In ligature-induced periodontitis mice, local administration of receptor interacting protein kinase 3(RIPK3) inhibitor GSK'872 or sh-mixed-lineage kinase domain-like pseudokinase (Mlkl) markedly abrogated necroptosis and rescued periodontitis. Analogously, necroptosis inhibitors alleviated the inflammatory response and release of damage-associated molecular patterns in lipopolysaccharide- or LAZ (LPS + AZD'5582 + z-VAD-fmk, necroptosis inducer)-induced GFs and then reduced THP-1 cell migration and M1 polarization. CONCLUSIONS Necroptosis in GFs aggravated gingival inflammation and alveolar bone loss. Necroptosis inhibitors attenuate this process by modulating THP-1 macrophage migration and polarization. This study offers novel insights into the pathogenesis and potential therapeutic targets of periodontitis.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Schukfeh N, Liu B, DeLuca DS, Tumpara S, Nikolin C, Immenschuh S, Ure BM, Kuebler JF, Welte T, Viemann D, Janciauskiene SM, Vieten G. Pleural CD14 + monocytes/macrophages of healthy adolescents show a high expression of metallothionein family genes. Eur J Immunol 2023; 53:e2250019. [PMID: 36321537 DOI: 10.1002/eji.202250019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Nowadays laparoscopic interventions enable the collection of resident macrophage populations out of the human cavities. We employed this technique to isolate pleural monocytes/macrophages from healthy young adults who underwent a correction of pectus excavatum. High quality CD14+ monocytes/macrophages (plMo/Mφ) were used for RNA-sequencing (RNA-seq) in comparison with human monocyte-derived macrophages (MDM) natural (MDM-0) or IL-4-polarized (MDM-IL4). Transcriptome analysis revealed 7166 and 7076 differentially expressed genes (DEGs) in plMo/Mφ relative to natural MDM-0 and polarized MDM-IL4, respectively. The gene set enrichment analysis, which was used to compare RNA-seq data from plMo/Mφ with single-cell (scRNA-seq) data online from human bronchial lavage macrophages, showed that plMo/Mφs are characterized by a high expression of genes belonging to the metallothionein (MT) family, and that the expression of these genes is significantly higher in plMo/Mφ than in MDM-0 or MDM-IL4. Our results provide additional insights on high MTs-expressing macrophage subsets, which seem to be present not only in bronchial lavage of healthy adults or in pleural exudates of lung cancer patients but also in pleural fluid of healthy young adults. Macrophage subsets expressing high MTs may have specific roles in lung defense, repair, and homeostasis, and require further investigations.
Collapse
Affiliation(s)
- Nagoud Schukfeh
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Bin Liu
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Srinu Tumpara
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Benno M Ure
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim F Kuebler
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Sabina M Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|