1
|
Duléry R, Piccinelli S, Beg MS, Jang JE, Romee R. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy. Am J Hematol 2024; 99:2340-2350. [PMID: 39248561 DOI: 10.1002/ajh.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
An innovative approach is crucially needed to manage relapse after allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematological malignancies. This review explores key aspects of haploidentical HCT with post-transplant cyclophosphamide, highlighting the potential and suitability of this platform for natural killer (NK) cell immunotherapy. NK cells, known for their unique abilities to eliminate cancer cells, can also exhibit memory-like features and enhanced cytotoxicity when activated by cytokines. By discussing promising results from clinical trials, the review delves into the recent major advances: donor-derived NK cells can be expanded ex vivo in large numbers, cytokine activation may enhance NK cell persistence and efficacy in vivo, and post-HCT NK cell infusion can improve outcomes in high-risk and/or relapsed myeloid malignancies without increasing the risk of graft-versus-host disease, severe cytokine release syndrome, or neurotoxicity. Looking ahead, cytokine-activated NK cells can be synergized with immunomodulatory agents and/or genetically engineered to enhance their tumor-targeting specificity, cytotoxicity, and persistence while preventing exhaustion. The ongoing exploration of these strategies holds promising preliminary results and could be rapidly translated into clinical applications for the benefit of the patients.
Collapse
Affiliation(s)
- Rémy Duléry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Piccinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ji Eun Jang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Cao XY, Zhou HF, Liu XJ, Li XB. Human leukocyte antigen evolutionary divergence as a novel risk factor for donor selection in acute lymphoblastic leukemia patients undergoing haploidentical hematopoietic stem cell transplantation. Front Immunol 2024; 15:1440911. [PMID: 39229273 PMCID: PMC11369896 DOI: 10.3389/fimmu.2024.1440911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction The human leukocyte antigen (HLA) evolutionary divergence (HED) reflects immunopeptidome diversity and has been shown to predict the response of tumors to immunotherapy. Its impact on allogeneic hematopoietic stem cell transplantation (HSCT) is controversial in different studies. Methods In this study, we retrospectively analyzed the clinical impact of class I and II HED in 225 acute lymphoblastic leukemia patients undergoing HSCT from related haploidentical donors. The HED for recipient, donor, and donor-recipient pair was calculated based on Grantham distance, which accounts for variations in the composition, polarity, and volume of each amino acid within the peptide-binding groove of two HLA alleles. The median value of HED scores was used as a cut-off to stratify patients with high or low HED. Results The class I HED for recipient (R_HEDclass I) showed the strongest association with cumulative incidence of relapse (12.2 vs. 25.0%, P = 0.00814) but not with acute graft-versus-host disease. The patients with high class II HED for donor-recipient (D/R_HEDclass II) showed a significantly higher cumulative incidence of severe aGVHD than those with low D/R_HEDclass II (24.0% vs. 6.1%, P = 0.0027). Multivariate analysis indicated that a high D/R_HEDclass II was an independent risk factor for the development of severe aGVHD (P = 0.007), and a high R_HEDclass I had a more than two-fold reduced risk of relapse (P = 0.028). However, there was no discernible difference in overall survival (OS) or disease-free survival (DFS) for patients with high or low HED, which was inconsistent with the previous investigation. Discussion While the observation are limited by the presented single center retrospective cohort, the results show that HED has poor prognostic value in OS or DFS, as well as the associations with relapse and aGVHD. In haploidentical setting, class II HED for donor-recipient pair (D/R_HEDclass II) is an independent and novel risk factor for finding the best haploidentical donor, which could potentially influence clinical practice if verified in larger cohorts.
Collapse
Affiliation(s)
- Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Hai-Fei Zhou
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiang-Jun Liu
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| | - Xiao-Bo Li
- Beijing BFR Gene Diagnostics Co., Ltd, Beijing, China
| |
Collapse
|
3
|
Tseng CP, Lin TL, Tsai SH, Lin WT, Hsu FP, Wang WT, Chen DP. Preliminary Data on SNP of Transplantation-Related Genes after Haploidentical Stem Cell Transplantation. J Clin Med 2024; 13:4681. [PMID: 39200825 PMCID: PMC11354871 DOI: 10.3390/jcm13164681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Hematopoietic stem cell transplantation (HSCT) is one of the mainstream treatments for patients with hematologic malignancies. The matching status of human leukocyte antigen (HLA) between the donor and recipient is highly related to the outcomes of HSCT. Haploidentical HSCT (haplo-HSCT) has emerged as a type of HSCT for patients who cannot find a fully HLA-matched donor. In this study, we investigated whether the single nucleotide polymorphisms (SNPs) of the HLA-related genes and the genes encoding co-stimulatory molecules located on the non-HLA region are related to the outcomes of haplo-HSCT. Methods: The genomic DNAs of 24 patients and their respective donors were isolated from the peripheral blood obtained before performing haplo-HSCT. A total of 75 SNPs of the HLA-related genes (HCP5, NOTCH4, HLA-DOA, LTA, HSPA1L, BAG6, RING1, TRIM27, and HLA-DOB) and the genes located in the non-HLA genes involved in co-stimulatory signaling (CTLA4, TNFSF4, CD28, and PDCD1) were selected to explore their relationship with the outcomes after haplo-HSCT, including graft-versus-host disease, survival status, and relapse. Results: Our data revealed that specific donor or patient SNPs, including rs79327197 of the HLA-DOA gene, rs107822 and rs213210 of the RING1 gene, rs2523676 of the HCP5 gene, rs5742909 of the CTLA4 gene, rs5839828 and rs36084323 of the PDCD1 gene, and rs1234314 of the TNFSF4 gene, were significantly related to the development of adverse outcomes post-haplo-HSCT. Conclusions: These SNPs may play important roles in post-transplant immune response that can be considered during the selection of suitable donors.
Collapse
Affiliation(s)
- Ching-Ping Tseng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tung-Liang Lin
- Division of Hematology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Shu-Hui Tsai
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
| | - Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-P.T.); (S.-H.T.); (W.-T.L.); (F.-P.H.); (W.-T.W.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| |
Collapse
|
4
|
Hadjis AD, McCurdy SR. The role and novel use of natural killer cells in graft-versus-leukemia reactions after allogeneic transplantation. Front Immunol 2024; 15:1358668. [PMID: 38817602 PMCID: PMC11137201 DOI: 10.3389/fimmu.2024.1358668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) has transformed over the past several decades through enhanced supportive care, reduced intensity conditioning (RIC), improved human leukocyte antigen (HLA) typing, and novel graft-versus-host disease (GVHD)-prevention and treatment strategies. Most notably, the implementation of post-transplantation cyclophosphamide (PTCy) has dramatically increased the safety and availability of this life-saving therapy. Given reductions in nonrelapse mortality (NRM) with these advances, the HCT community has placed even greater emphasis on developing ways to reduce relapse - the leading cause of death after HCT. When using RIC HCT, protection from relapse relies predominantly on graft-versus-leukemia (GVL) reactions. Donor lymphocyte infusion (DLI), adoptive cellular therapy, checkpoint inhibition, and post-HCT maintenance strategies represent approaches under study that aim to augment or synergize with the GVL effects of HCT. Optimizing donor selection algorithms to leverage GVL represents another active area of research. Many of these strategies seek to harness the effects of T cells, which for decades were felt to be the primary mediators of GVL and the focus of investigation in relapse reduction. However, there is growing interest in capitalizing on the ability of natural killer (NK) cells to yield potent anti-tumor effects. A potential advantage of NK cell-based approaches over T cell-mediated is the potential to reduce NRM in addition to relapse. By decreasing infection, without increasing the risk of GVHD, NK cells may mitigate NRM, while still yielding relapse reduction through identification and clearance of cancer cells. Most T cell-focused relapse-prevention strategies must weigh the benefits of relapse reduction against the increased risk of NRM from GVHD. In contrast, NK cells have the potential to reduce both, potentially tipping the scales significantly in favor of survival. Here, we will review the role of NK cells in GVL, optimization of NK cell match or mismatch, and burgeoning areas of research in NK cell therapy such as adoptive transfer and chimeric antigen receptor (CAR) NK cells.
Collapse
Affiliation(s)
- Ashley D. Hadjis
- Department of Internal Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Shannon R. McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Moyer AM, Hashmi SK, Kroning CM, Patnaik M, Litzow M, Gastineau DA, Hogan WJ, Jacob EK, Kreuter JD, Wakefield LL, Gandhi MJ. Clinical impact of KIR haplotypes in 10/10 HLA-matched unrelated donor-recipient pairs undergoing allogeneic hematopoietic stem cell transplantation. Leuk Lymphoma 2023; 64:671-678. [PMID: 36448323 DOI: 10.1080/10428194.2022.2151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
To evaluate the impact of killer immunoglobulin-like receptor (KIR) genotyping in allogeneic hematopoietic stem cell transplantation for myeloid disorders at our institution, retrospective KIR genotyping was performed on 77 patients and their 10/10 matched unrelated donors. In a multivariate model including donor age, HLA-DPB1 permissiveness, and presence of donor KIR B/x, an association with overall survival was observed (p = .047). Within the model, increasing donor age increased risk (RR 1.03 [1.00-1.06]/year, p = .046), while donor KIR and HLA-DPB1 permissiveness were not associated with risk (RR 0.51 [0.26-1.03] and RR 0.68 [0.34-1.36]). Grouping recipients by conditioning regimen or limiting the analysis to recipients of peripheral blood stem cells, no association between donor KIR and survival or relapse was identified. No significant associations were observed between overall survival, relapse, grade III-IV acute, or chronic graft versus host disease and presence of KIR B (B/x), quantity of donor KIR B haplotype motifs, or centromeric KIR type (all p > .05).
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Cynthia M Kroning
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Dennis A Gastineau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Eapen K Jacob
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Justin D Kreuter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Laurie L Wakefield
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Meazza R, Ruggeri L, Guolo F, Minetto P, Canevali P, Loiacono F, Ciardelli S, Bo A, Luchetti S, Serio A, Zannoni L, Retière C, Colomar-Carando N, Parisi S, Curti A, Lemoli RM, Pende D. Donor selection for adoptive immunotherapy with NK cells in AML patients: Comparison between analysis of lytic NK cell clones and phenotypical identification of alloreactive NK cell repertoire. Front Immunol 2023; 14:1111419. [PMID: 36865545 PMCID: PMC9971917 DOI: 10.3389/fimmu.2023.1111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Natural killer (NK) cell-based adoptive immunotherapy in leukemia patients is an emerging field of interest based on clinical evidence of efficacy and safety. Elderly acute myeloid leukemia (AML) patients have been successfully treated with NK cells from HLA-haploidentical donors, especially when high amounts of alloreactive NK cells were infused. The aim of this study was comparing two approaches to define the size of alloreactive NK cells in haploidentical donors for AML patients recruited in two clinical trials with the acronym "NK-AML" (NCT03955848), and "MRD-NK". The standard methodology was based on the frequency of NK cell clones capable of lysing the related patient-derived cells. The alternative approach consisted of the phenotypic identification of freshly derived NK cells expressing, as inhibitory receptors, only the inhibitory KIR(s) specific for the mismatched KIR-Ligand(s) (HLA-C1, HLA-C2, HLA-Bw4). However, in KIR2DS2+ donors and HLA-C1+ patients, the unavailability of reagents staining only the inhibitory counterpart (KIR2DL2/L3) may lead to an underestimated identification of the alloreactive NK cell subset. Conversely, in the case of HLA-C1 mismatch, the alloreactive NK cell subset could be overestimated due to the ability of KIR2DL2/L3 to recognize with low-affinity also HLA-C2. Especially in this context, the additional exclusion of LIR1-expressing cells might be relevant to refine the size of the alloreactive NK cell subset. We could also associate degranulation assays, using as effector cells IL-2 activated donor peripheral blood mononuclear cells (PBMC) or NK cells upon co-culture with the related patient target cells. The donor alloreactive NK cell subset always displayed the highest functional activity, confirming its identification accuracy by flow cytometry. Despite the phenotypic limitations and considering the proposed corrective actions, a good correlation was shown by the comparison of the two investigated approaches. In addition, the characterization of receptor expression on a fraction of NK cell clones revealed expected but also few unexpected patterns. Thus, in most instances, the quantification of phenotypically defined alloreactive NK cells from PBMC can provide data similar to the analysis of lytic clones, with several advantages, such as a shorter time to achieve the results and, perhaps, higher reproducibility/feasibility in many laboratories.
Collapse
Affiliation(s)
- Raffaella Meazza
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy,*Correspondence: Raffaella Meazza, ; Daniela Pende,
| | - Loredana Ruggeri
- Divisione di Ematologia e Immunologia Clinica, Dipartimento di Medicina, Ospedale Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Fabio Guolo
- Clinica di Ematologia, Dipartimento di Medicina Interna (DiMI), Università degli studi di Genova, Genova, Italy,Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Minetto
- Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Canevali
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizio Loiacono
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Ciardelli
- Divisione di Ematologia e Immunologia Clinica, Dipartimento di Medicina, Ospedale Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Alessandra Bo
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Luchetti
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alberto Serio
- Laboratorio Centro Cellule Staminali e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Letizia Zannoni
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Christelle Retière
- Université de Nantes, Etablissement Français du Sang (EFS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancé rologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
| | | | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Roberto M. Lemoli
- Clinica di Ematologia, Dipartimento di Medicina Interna (DiMI), Università degli studi di Genova, Genova, Italy,Dipartimento di Ematologia e Oncologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Pende
- Unità Operativa UO Immunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy,*Correspondence: Raffaella Meazza, ; Daniela Pende,
| |
Collapse
|
7
|
Dhuyser A, Remen T, Pérès M, Chamberlain-Evans V, Nemat-Gorgani N, Campidelli A, Clément S, Rubio MT, Trowsdale J, Aarnink A, Traherne J. Comparison of NK alloreactivity prediction models based on KIR-MHC interactions in haematopoeitic stem cell transplantation. Front Immunol 2023; 14:1028162. [PMID: 36936953 PMCID: PMC10017772 DOI: 10.3389/fimmu.2023.1028162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/17/2023] [Indexed: 03/06/2023] Open
Abstract
The biological processes underlying NK cell alloreactivity in haematopoietic stem cell transplantation (HSCT) remain unclear. Many different models to predict NK alloreactivity through KIR and MHC genotyping exist, raising ambiguities in its utility and application for clinicians. We assessed 27 predictive models, broadly divided into six categories of alloreactivity prediction: ligand-ligand, receptor-ligand, educational, KIR haplotype-based, KIR matching and KIR allelic polymorphism. The models were applied to 78 NGS-typed donor/recipient pairs undergoing allogeneic HSCT in genoidentical (n=43) or haploidentical (n=35) matchings. Correlations between different predictive models differed widely, suggesting that the choice of the model in predicting NK alloreactivity matters. For example, two broadly used models, educational and receptor-ligand, led to opposing predictions especially in the genoidentical cohort. Correlations also depended on the matching fashion, suggesting that this parameter should also be taken into account in the choice of the scoring strategy. The number of centromeric B-motifs was the only model strongly correlated with the incidence of acute graft-versus-host disease in our set of patients in both the genoidentical and the haploidentical cohorts, suggesting that KIR-based alloreactivity, not MHC mismatches, are responsible for it. To our best knowledge, this paper is the first to experimentally compare NK alloreactivity prediction models within a cohort of genoidentical and haploidentical donor-recipient pairs. This study helps to resolve current discrepancies in KIR-based alloreactivity predictions and highlights the need for deeper consideration of the models used in clinical studies as well as in medical practice.
Collapse
Affiliation(s)
- Adèle Dhuyser
- Histocompatibility Laboratory, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
- Ingénieurie Moléculaire et Physiopathologie Articulaire, team 6 (IMoPA6), Unité Mixte de Recherche 7365 Centre national de la Recherche Scientifique, Université de Lorraine, Nancy, France
- *Correspondence: James Traherne, ; Adèle Dhuyser,
| | - Thomas Remen
- Direction de la Recherche Clinique et de l’Innovation, Unité de Méthodologie, Datamanagement et Statistiques, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Michaël Pérès
- Histocompatibility Laboratory, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | | | - Neda Nemat-Gorgani
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Arnaud Campidelli
- Department of Hematology, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Sandra Clément
- Histocompatibility Laboratory, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Marie Thérèse Rubio
- Ingénieurie Moléculaire et Physiopathologie Articulaire, team 6 (IMoPA6), Unité Mixte de Recherche 7365 Centre national de la Recherche Scientifique, Université de Lorraine, Nancy, France
- Department of Hematology, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alice Aarnink
- Histocompatibility Laboratory, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
- Ingénieurie Moléculaire et Physiopathologie Articulaire, team 6 (IMoPA6), Unité Mixte de Recherche 7365 Centre national de la Recherche Scientifique, Université de Lorraine, Nancy, France
| | - James Traherne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: James Traherne, ; Adèle Dhuyser,
| |
Collapse
|
8
|
Tripathi G, Khanolkar RA, Faridi RM, Kalra A, Dharmani-Khan P, Shabani-Rad MT, Berka N, Daly A, Storek J, Khan FM. Donor Genetic Predisposition to High Interleukin-10 Production Appears Protective against Acute Graft-Versus-Host Disease. Int J Mol Sci 2022; 23:ijms232415888. [PMID: 36555525 PMCID: PMC9779827 DOI: 10.3390/ijms232415888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The persistence of graft-versus-host disease (GVHD) as the principal complication of allogeneic hematopoietic cell transplantation (HCT) demonstrates that HLA matching alone is insufficient to prevent alloreactivity. We performed molecular and functional characterization of 22 candidate cytokine genes for their potential to improve matching in 315 myeloablative, 10/10 HLA-matched donor−recipient pairs. Recipients of a graft carrying the -1082GG IL10 gene promoter region variant had a three-fold lower incidence of grade II−IV acute GVHD compared to IL10-1082AA graft recipients (SHR = 0.25, p = 0.005). This was most evident in matched unrelated donor (MUD) transplants, where the greatest alloreactivity is expected. IL10-1082GG transplants did not experience an increased incidence of relapse, and, consequently, overall survival was two-fold higher in IL10-1082GG MUD transplants (HR = 0.17, p = 0.023). Longitudinal post-transplant measurements demonstrated that -1082GG is a high-IL10-producing and -expressing genotype with attenuated CD8+ T-cell reconstitution. High post-transplant donor chimerism in T- and myeloid-cells (>95%) confirmed a predominant donor, rather than recipient, genotype effect on immune function and aGVHD. To date, this is the first study to report corroborating genome-to-cellular evidence for a non-HLA donor immunogenetic variant that appears to be protective against GVHD. The incorporation of IL10 variants in donor selection criteria and clinical-management decisions has the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Gaurav Tripathi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Rutvij A. Khanolkar
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rehan M. Faridi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Amit Kalra
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
| | - Poonam Dharmani-Khan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Meer-Taher Shabani-Rad
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Noureddine Berka
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
| | - Andrew Daly
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Health Services, Calgary, AB T2N 4L7, Canada
| | - Jan Storek
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Health Services, Calgary, AB T2N 4L7, Canada
| | - Faisal M. Khan
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pathology and Laboratory Medicine, Calgary, AB T2L 1N4, Canada
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada
- Correspondence: ; Tel.: +1-403-220-7671; Fax: +1-403-210-8176
| |
Collapse
|
9
|
Yokoyama H. Role of NK cells in cord blood transplantation and their enhancement by the missing ligand effect of the killer-immunoglobulin like receptor. Front Genet 2022; 13:1041468. [PMID: 36330445 PMCID: PMC9623085 DOI: 10.3389/fgene.2022.1041468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the first lymphocytes reconstituted after allogenic hematopoietic stem cell transplantation (HSCT). Especially, in cord blood transplantation (CBT), the increase in the number of NK cells is sustained for a long period. Although there are conflicting results, many studies show that early reconstitution of NK cells is associated with favorable CBT outcomes, suggesting that maximizing NK cell functions could improve the CBT outcome. Killer immunoglobulin-like receptors (KIRs) include inhibitory and stimulatory receptors, which can regulate NK-cell activity. Because some of the KIRs have HLA class I as their ligand, the KIR—ligand interaction on NK cells can be lost in some cases of CBT, which results in the activation of NK cells and alters HSCT outcome. Thus, effects of KIR–ligand mismatch under various conditions have been widely examined; however, the results have been controversial. Among such studies, those using the largest number of CBTs showed that HLA—C2 (KIR2DL1—ligand) mismatches have a favorable effect on the relapse rate and overall survival only when the CBT used methotrexate for graft-versus-host disease prophylaxis. Another study suggested that KIR—ligand mismatch is involved in reducing the relapse of acute myeloid leukemia, mediated by reactivation of cytomegalovirus. These results indicate that activation of NK cells by KIR—ligand mismatch may have favorable effects on CBT outcomes and could help enhance the NK-cell function.
Collapse
|
10
|
Jennifer Zhang Q. Donor selection based on NK alloreactivity for patients with hematological malignancies. Hum Immunol 2022; 83:695-703. [PMID: 35965181 DOI: 10.1016/j.humimm.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are an important defender against infections and tumors. Their function is regulated by the balance of inhibitory and activating receptors. Among all inhibitory NK receptors: killer immunoglobulin-like receptors (KIR) and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to be 'licensed' to avoid autoreactivity, but be fully functional at the same time. Licensed NK cells can target malignant cells with altered or downregulated/missing 'self' antigens. NK cell attacking malignant cells is one of the mechanisms of graft-versus-leukemia (GVL) effect. Numerous studies have demonstrated that NK cells improve hematopoietic stem cell transplantation (HCT) survival by reducing relapse mortality through GVL effect. Therapeutic strategies, such as adoptive alloreactive NK cell transfer, CAR-NK cells, antibodies against NKG2A and KIR2DL1-3, have been utilized to treat hematological malignancies in HCT. In this review, NK cell functions, NK cell receptors and ligands, as well as common alloreactive NK donor selection algorithms for patients with hematological malignancies in the setting of HCT are discussed. The goal of this review is to provide insights on the controversial results and provide better understanding and resources on how to perform alloreactive donor NK cell selection in HCT.
Collapse
Affiliation(s)
- Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA.
| |
Collapse
|