1
|
Xu J, Luo W, Li C, Mei H. Targeting CD22 for B-cell hematologic malignancies. Exp Hematol Oncol 2023; 12:90. [PMID: 37821931 PMCID: PMC10566133 DOI: 10.1186/s40164-023-00454-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
CD19-targeted chimeric receptor antigen (CAR)-T cell therapy has shown remarkable clinical efficacy in the treatment of relapsed or refractory (R/R) B-cell malignancies. However, 30%-60% of patients eventually relapsed, with the CD19-negative relapse being an important hurdle to sustained remission. CD22 expression is independent of CD19 expression in malignant B cells. Consequently, CD22 is a potential alternative target for CD19 CAR-T cell-resistant patients. CD22-targeted therapies, mainly including the antibody-drug conjugates (ADCs) and CAR-T cells, have come into wide clinical use with acceptable toxicities and promising efficacy. In this review, we explore the molecular and physiological characteristics of CD22, development of CD22 ADCs and CAR-T cells, and the available clinical data on CD22 ADCs and CAR-T cell therapies. Furthermore, we propose some perspectives for overcoming tumor escape and enhancing the efficacy of CD22-targeted therapies.
Collapse
Affiliation(s)
- Jia Xu
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Wenjing Luo
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chenggong Li
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Heng Mei
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
2
|
Luo Z, Shi J, Jiang Q, Yu G, Li X, Yu Z, Wang J, Shi Y. Gallic acid enhances anti-lymphoma function of anti-CD19 CAR-T cells in vitro and in vivo. MOLECULAR BIOMEDICINE 2023; 4:8. [PMID: 36871129 PMCID: PMC9985527 DOI: 10.1186/s43556-023-00122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell targeting CD19 antigen has achieved exhilarative clinical efficacy in B-cell malignancies. However, challenges still remain for the currently approved anti-CD19 CAR-T therapies, including high recurrence rates, side effects and resistance. Herein, we aim to explore combinatorial therapy by use of anti-CD19 CAR-T immunotherapy and gallic acid (GA, an immunomodulatory natural product) for improving treatment efficacy. We assessed the combinatorial effect of anti-CD19 CAR-T immunotherapy with GA in cell models and a tumor-bearing mice model. Then, the underlying mechanism of GA on CAR-T cells were investigated by integrating network pharmacology, RNA-seq analysis and experimental validation. Furthermore, the potential direct targets of GA on CAR-T cells were explored by integrating molecular docking analysis with surface plasmon resonance (SPR) assay. The results showed that GA significantly enhanced the anti-tumor effects, cytokine production as well as the expansion of anti-CD19 CAR-T cells, which may be mainly through the activation of IL4/JAK3-STAT3 signaling pathway. Furthermore, GA may directly target and activate STAT3, which may, at least in part, contribute to STAT3 activation. Overall, the findings reported here suggested that the combination of anti-CD19 CAR-T immunotherapy with GA would be a promising approach to increase the anti-lymphoma efficacy.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.,State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaru Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qiyao Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhuoying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China. .,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China. .,Shenzhen Cell Valley Biopharmaceuticals Co., Ltd., Shenzhen, 518118, China.
| | - Yuanyuan Shi
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China. .,Shenzhen Cell Valley Biopharmaceuticals Co., Ltd., Shenzhen, 518118, China.
| |
Collapse
|
3
|
Orentas RJ. Chimeric engulfment receptors: A new cell therapy approach for SIV and HIV infection. Mol Ther Methods Clin Dev 2023; 28:160-161. [PMID: 36654799 PMCID: PMC9826801 DOI: 10.1016/j.omtm.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rimas J. Orentas
- Scientific Director, Caring Cross Professor, Department Pediatrics, University of Washington School of Medicine, Seattle, WA 98185, USA,Investigator, Seattle Children’s Research Institute, Seattle, WA 98101, USA,Corresponding author: Rimas J. Orentas, Investigator, Seattle Children’s Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
4
|
Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol 2022; 13:1019115. [PMID: 36248810 PMCID: PMC9557333 DOI: 10.3389/fimmu.2022.1019115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Collapse
|
5
|
Xiao X, Wang Y, Zou Z, Yang Y, Wang X, Xin X, Tu S, Li Y. Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Front Immunol 2022; 13:954235. [PMID: 36091028 PMCID: PMC9460961 DOI: 10.3389/fimmu.2022.954235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the therapeutic landscape of haematological malignancies. However, resistance and relapse remain prominent limitations, and they are related to the limited persistence and efficacy of CAR T cells, downregulation or loss of tumour antigens, intrinsic resistance of tumours to death signalling, and immune suppressive microenvironment. Rational combined modality treatments are regarded as a promising strategy to further unlock the antitumor potential of CAR T cell therapy, which can be applied before CAR T cell infusion as a conditioning regimen or in ex vivo culture settings as well as concomitant with or after CAR T cell infusion. In this review, we summarize the combinatorial strategies, including chemotherapy, radiotherapy, haematopoietic stem cell transplantation, targeted therapies and other immunotherapies, in an effort to further enhance the effectiveness of this impressive therapy and benefit more patients.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Zhengbang Zou
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xin
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,*Correspondence: Sanfang Tu, ; Yuhua Li,
| |
Collapse
|