1
|
Wang F, Xiao J. The mediating role of primary sclerosing cholangitis in the association between ulcerative colitis and hepatobiliary cancer investigated through Mendelian randomization. Sci Rep 2024; 14:31433. [PMID: 39732896 DOI: 10.1038/s41598-024-83085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
This study explored the causal relationships among primary sclerosing cholangitis (PSC), ulcerative colitis (UC), and hepatobiliary cancer (HBC) by using bidirectional two-sample, two-step Mendelian randomization (MR) analysis. Genetic variants associated with PSC and UC from the FinnGen research database were used for instrumental variable-based analyses. Mediation analyses were conducted to examine the role of PSC and UC in HBC risk. The findings revealed a causal effect of genetic predisposition to UC on PSC risk (inverse-variance-weighted [IVW] analysis odds ratio [OR] 1.145, p < 0.001), whereas no reverse causality was observed. Although UC showed no direct causal effect on HBC risk, genetic susceptibility to PSC significantly increased the risk of HBC (IVW analysis OR = 1.855, p < 0.001). Mediation analysis further identified PSC as a significant mediator amplifying the causal effect of UC on HBC risk (effect size = 0.083). These results established a causal link between genetic susceptibility to UC and increased risk of PSC, and highlighted the critical role of PSC in mediating the impact of UC on HBC risk.
Collapse
Affiliation(s)
- Fangming Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, Hunan Province, China.
| | - Junhui Xiao
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| |
Collapse
|
2
|
Luo X, Lu LG. Progress in the Management of Patients with Cholestatic Liver Disease: Where Are We and Where Are We Going? J Clin Transl Hepatol 2024; 12:581-588. [PMID: 38974958 PMCID: PMC11224908 DOI: 10.14218/jcth.2023.00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 07/09/2024] Open
Abstract
Cholestatic liver disease is a group of diseases in which bile acid accumulates in the liver for various reasons, resulting in abnormal liver biochemical indicators and histological damage. Cholestasis can be divided into intrahepatic cholestasis and extrahepatic cholestasis, which will contribute to liver damage and progress to liver fibrosis and cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis are the two most typical cholestatic liver diseases. Ursodeoxycholic acid is currently the first-line treatment for PBC, while obeticholic acid, budesonide and fibrates have also shown good potential in the treatment of PBC. There are currently no official drugs approved to treat primary sclerosing cholangitis, and the use of ursodeoxycholic acid may have certain clinical benefits. At present, progress has been made in new treatment directions for cholestatic liver disease, including fibroblast growth factor 19, cholestyramine, S-adenosyl-L-methionine, steroid drugs, farnesoid X receptor agonists, and more. Considerable progress has been made in the management of cholestatic liver disease but there are still many opportunities and challenges. In this review, we summarized the recommended guidelines for the management of cholestatic disease and the progress of new drug research and development, in order to provide an important reference for the clinical practice of cholestatic liver disease.
Collapse
Affiliation(s)
- Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
van Munster KN, Bergquist A, Ponsioen CY. Inflammatory bowel disease and primary sclerosing cholangitis: One disease or two? J Hepatol 2024; 80:155-168. [PMID: 37940453 DOI: 10.1016/j.jhep.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Primary sclerosing cholangitis (PSC) was declared one of the biggest unmet needs in hepatology during International Liver Congress 2016 in Berlin. Since then, not much has changed unfortunately, largely due to the still elusive pathophysiology of the disease. One of the most striking features of PSC is its association with inflammatory bowel disease (IBD), with the majority of patients with PSC being diagnosed with extensive colitis. This review describes the epidemiology of IBD in PSC, its specific phenotype, complications and potential pathophysiological mechanisms connecting the two diseases. Whether PSC is merely an extra-intestinal manifestation of IBD or if PSC and IBD are two distinct diseases that happen to share a common susceptibility that leads to a dual phenotype is debated. Implications for the management of the two diseases together are also discussed. Overall, this review summarises the available data in PSC-IBD and discusses whether PSC and IBD are one or two disease(s).
Collapse
Affiliation(s)
- Kim N van Munster
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Annika Bergquist
- Department of Medicine Huddinge, Division of Hepatology, Karolinska Institutet, Department of Upper GI Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Hageman I, Mol F, Atiqi S, Joustra V, Sengul H, Henneman P, Visman I, Hakvoort T, Nurmohamed M, Wolbink G, Levin E, Li Yim AY, D’Haens G, de Jonge WJ. Novel DNA methylome biomarkers associated with adalimumab response in rheumatoid arthritis patients. Front Immunol 2023; 14:1303231. [PMID: 38187379 PMCID: PMC10771853 DOI: 10.3389/fimmu.2023.1303231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Background and aims Rheumatoid arthritis (RA) patients are currently treated with biological agents mostly aimed at cytokine blockade, such as tumor necrosis factor-alpha (TNFα). Currently, there are no biomarkers to predict therapy response to these agents. Here, we aimed to predict response to adalimumab (ADA) treatment in RA patients using DNA methylation in peripheral blood (PBL). Methods DNA methylation profiling on whole peripheral blood from 92 RA patients before the start of ADA treatment was determined using Illumina HumanMethylationEPIC BeadChip array. After 6 months, treatment response was assessed according to the European Alliance of Associations for Rheumatology (EULAR) criteria for disease activity. Patients were classified as responders (Disease Activity Score in 28 Joints (DAS28) < 3.2 or decrease of 1.2 points) or as non-responders (DAS28 > 5.1 or decrease of less than 0.6 points). Machine learning models were built through stability-selected gradient boosting to predict response prior to ADA treatment with predictor DNA methylation markers. Results Of the 94 RA patients, we classified 49 and 43 patients as responders and non-responders, respectively. We were capable of differentiating responders from non-responders with a high performance (area under the curve (AUC) 0.76) using a panel of 27 CpGs. These classifier CpGs are annotated to genes involved in immunological and pathophysiological pathways related to RA such as T-cell signaling, B-cell pathology, and angiogenesis. Conclusion Our findings indicate that the DNA methylome of PBL provides discriminative capabilities in discerning responders and non-responders to ADA treatment and may therefore serve as a tool for therapy prediction.
Collapse
Affiliation(s)
- Ishtu Hageman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Femke Mol
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sadaf Atiqi
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands
| | - Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Hilal Sengul
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Ingrid Visman
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands
| | - Theodorus Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Mike Nurmohamed
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands
| | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Vrije Universiteit (VU) University Medical Center, Amsterdam, Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Horaizon BV, Delft, Netherlands
| | - Andrew Y.F. Li Yim
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Caliendo G, D'Elia G, Makker J, Passariello L, Albanese L, Molinari AM, Vietri MT. Biological, genetic and epigenetic markers in ulcerative colitis. Adv Med Sci 2023; 68:386-395. [PMID: 37813048 DOI: 10.1016/j.advms.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
In this review, we have summarized the existing knowledge of ulcerative colitis (UC) markers based on current literature, specifically, the roles of potential new biomarkers, such as circulating, fecal, genetic, and epigenetic alterations, in UC onset, disease activity, and in therapy response. UC is a complex multifactorial inflammatory disease. There are many invasive and non-invasive diagnostic methods in UC, including several laboratory markers which are employed in diagnosis and disease assessment; however, colonoscopy remains the most widely used method. Common laboratory abnormalities currently used in the clinical practice include inflammation-induced alterations, serum autoantibodies, and antibodies against bacterial antigens. Other new serum and fecal biomarkers are supportive in diagnosis and monitoring disease activity and therapy response; and potential salivary markers are currently being evaluated as well. Several UC-related genetic and epigenetic alterations are implied in its pathogenesis and therapeutic response. Moreover, the use of artificial intelligence in the integration of laboratory biomarkers and big data could potentially be useful in clinical translation and precision medicine in UC management.
Collapse
Affiliation(s)
- Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna D'Elia
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jasmine Makker
- Department of GKT School of Medical Education, King's College London, London, UK
| | - Luana Passariello
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Maria Molinari
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
6
|
Elfiky AMI, Hageman IL, Becker MAJ, Verhoeff J, Li Yim AYF, Joustra VW, Mulders L, Fung I, Rioja I, Prinjha RK, Smithers NN, Furze RC, Mander PK, Bell MJ, Buskens CJ, D’Haens GR, Wildenberg ME, de Jonge WJ. A BET Protein Inhibitor Targeting Mononuclear Myeloid Cells Affects Specific Inflammatory Mediators and Pathways in Crohn’s Disease. Cells 2022; 11:cells11182846. [PMID: 36139421 PMCID: PMC9497176 DOI: 10.3390/cells11182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Myeloid cells are critical determinants of the sustained inflammation in Crohn’s Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities. In the current study, we make use of a BET inhibitor containing an esterase sensitive motif (ESM-iBET), which is cleaved by carboxylesterase-1 (CES1), a highly expressed esterase in mononuclear myeloid cells. Methods: We profiled CES1 protein expression in the intestinal biopsies, peripheral blood, and CD fistula tract (fCD) cells of CD patients using mass cytometry. The anti-inflammatory effect of ESM-iBET or its control (iBET) were evaluated in healthy donor CD14+ monocytes and fCD cells, using cytometric beads assay or RNA-sequencing. Results: CES1 was specifically expressed in monocyte, macrophage, and dendritic cell populations in the intestinal tissue, peripheral blood, and fCD cells of CD patients. ESM-iBET inhibited IL1β, IL6, and TNFα secretion from healthy donor CD14+ monocytes and fCD immune cells, with 10- to 26-fold more potency over iBET in isolated CD14+ monocytes. Transcriptomic analysis revealed that ESM-iBET inhibited multiple inflammatory pathways, including TNF, JAK-STAT, NF-kB, NOD2, and AKT signaling, with superior potency over iBET. Conclusions: We demonstrate specific CES1 expression in mononuclear myeloid cell subsets in peripheral blood and inflamed tissues of CD patients. We report that low dose ESM-iBET accumulates in CES1-expressing cells and exerts robust anti-inflammatory effects, which could be beneficial in refractory CD patients.
Collapse
Affiliation(s)
- Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Ishtu L. Hageman
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marte A. J. Becker
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Jan Verhoeff
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Andrew Y. F. Li Yim
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Vincent W. Joustra
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lieven Mulders
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ivan Fung
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Inmaculada Rioja
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Rab K. Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | | | - Rebecca C. Furze
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Palwinder K. Mander
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Matthew J. Bell
- Immunology Research Unit, GSK Medicines Research Centre, Stevenage SG1 2FX, UK
| | - Christianne J. Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal and Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +31205668163 or +31625387973
| |
Collapse
|