1
|
Belčič Mikič T, Arnol M. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics (Basel) 2024; 14:2482. [PMID: 39594148 PMCID: PMC11592658 DOI: 10.3390/diagnostics14222482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney allograft rejection is one of the main limitations to long-term kidney transplant survival. The diagnostic gold standard for detecting rejection is a kidney biopsy, an invasive procedure that can often give imprecise results due to complex diagnostic criteria and high interobserver variability. In recent years, several additional diagnostic approaches to rejection have been investigated, some of them with the aid of machine learning (ML). In this review, we addressed studies that investigated the detection of kidney allograft rejection over the last decade using various ML algorithms. Various ML techniques were used in three main categories: (a) histopathologic assessment of kidney tissue with the aim to improve the diagnostic accuracy of a kidney biopsy, (b) assessment of gene expression in rejected kidney tissue or peripheral blood and the development of diagnostic classifiers based on these data, (c) radiologic assessment of kidney tissue using diffusion-weighted magnetic resonance imaging and the construction of a computer-aided diagnostic system. In histopathology, ML algorithms could serve as a support to the pathologist to avoid misclassifications and overcome interobserver variability. Diagnostic platforms based on biopsy-based transcripts serve as a supplement to a kidney biopsy, especially in cases where histopathologic diagnosis is inconclusive. ML models based on radiologic evaluation or gene signature in peripheral blood may be useful in cases where kidney biopsy is contraindicated in addition to other non-invasive biomarkers. The implementation of ML-based diagnostic methods is usually slow and undertaken with caution considering ethical and legal issues. In summary, the approach to the diagnosis of rejection should be individualized and based on all available diagnostic tools (including ML-based), leaving the responsibility for over- and under-treatment in the hands of the clinician.
Collapse
Affiliation(s)
- Tanja Belčič Mikič
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Zaloška 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Broecker V, Toulza F, Brännström M, Ernst A, Roufosse C, Carbonnel M, Alkattan Z, Mölne J. Transcript analysis of uterus transplant cervical biopsies using the Banff Human Organ Transplant panel. Am J Transplant 2024:S1600-6135(24)00536-7. [PMID: 39216690 DOI: 10.1016/j.ajt.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Uterus transplantation is being more widely implemented in clinical practice. Monitoring of rejection is routinely done for cervical biopsies and is dependent on histopathological assessment, as rejections are clinically silent and nonhistological biomarkers are missing. Until this gap is filled, it is important to corroborate the histopathological diagnosis of rejection through independent methods such as gene expression analysis. In this study, we compared our previously published scoring system for grading rejection in uterus transplant cervical biopsies to the gene expression profile in the same biopsy. For this, we used the Banff Human Organ Transplant gene panel to analyze the expression of 788 genes in 75 paraffin-embedded transplant cervical biopsies with a spectrum of histologic findings, as well as in 24 cervical biopsies from healthy controls. We found that gene expression in borderline changes did not differ from normal transplants, whereas the genes with increased expression in mild rejections overlapped with previously published rejection-associated transcripts. Moderate/severe rejection samples showed a gene expression pattern characterized by a mixture of rejection-associated and tissue injury-associated genes and a decrease in epithelial transcripts. In summary, our findings support our proposed scoring system for rejection but argue against the treatment of borderline changes.
Collapse
Affiliation(s)
- Verena Broecker
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Frederic Toulza
- Department of Immunology and Inflammation, Imperial College, Centre for Inflammatory Disease, London, United Kingdom
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Germany; Institute for AI and Informatics in Medicine, Technical University of Munich, Germany
| | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College, Centre for Inflammatory Disease, London, United Kingdom
| | - Marie Carbonnel
- Department of Obstetrics and Gynecology, Foch Hospital, University of Versailles-Saint-Quentin-en-Yvelines Paris Saclay, Suresnes, France
| | - Zeinab Alkattan
- Department of Obstetrics and Gynecology, Halland Hospital, Varberg, Region Halland, Sweden
| | - Johan Mölne
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Dandonneau J, François A, Bertrand D, Candon S, de Nattes T. Systematic Biopsy-Based Transcriptomics and Diagnosis of Antibody-Mediated Kidney Transplant Rejection in Clinical Practice. Clin J Am Soc Nephrol 2024; 19:01277230-990000000-00426. [PMID: 39012712 PMCID: PMC11390017 DOI: 10.2215/cjn.0000000000000490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Key Points
Impact of biopsy-based transcriptomics in clinical practice is still unclear.Biopsy-based transcriptomics is indicated in a significant proportion of kidney transplant biopsies for the diagnosis of antibody-mediated rejection.Biopsy-based transcriptomics is useful for antibody-mediated rejection diagnosis in clinical practice.
Background
To diagnose kidney transplant antibody-mediated rejection (AMR), biopsy-based transcriptomics can substitute for some histological criteria according to the Banff classification. However, clinical accessibility of these assays is still limited. Here, we aimed to evaluate the impact of integrating a routine-compatible molecular assay for the diagnosis of AMR in clinical practice.
Methods
All biopsies performed in our center between 2013 and 2017 were retrospectively included. These biopsies were classified into three groups: AMR biopsies which displayed the full Banff criteria of AMR independently of biopsy-based transcriptomics; undetermined for AMR biopsies which did not meet AMR histological criteria, but would have been considered as AMR if biopsy-based transcriptomics had been positive; and control biopsies which showed no features of rejection.
Results
Within the inclusion period, 342 biopsies had a complete Banff scoring. Thirty-six of the biopsies already met AMR criteria, and 43 of 306 (14%) were considered as undetermined for AMR. Among these biopsies, 24 of 43 (56%) had a molecular signature of AMR, reclassifying them into the AMR category. Five-year death-censored survival of these biopsies was unfavorable and statistically equivalent to that of the AMR category (P = 0.22), with 15 of 24 (63%) graft loss.
Conclusions
A significant proportion of biopsies could benefit from a biopsy-based transcriptomics for AMR diagnosis according to the Banff classification. Using a routine-compatible molecular tool, more than the half of these biopsies were reclassified as AMR and associated with poor allograft survival.
Collapse
Affiliation(s)
| | | | | | - Sophie Candon
- Univ Rouen Normandie, INSERM U1234, CHU Rouen, Immunology Department, F-76000 Rouen, France
| | - Tristan de Nattes
- Univ Rouen Normandie, INSERM U1234, CHU Rouen, Nephrology Department, F-76000 Rouen, France
| |
Collapse
|
4
|
Cortes Garcia E, Giarraputo A, Racapé M, Goutaudier V, Ursule-Dufait C, de la Grange P, Adoux L, Raynaud M, Couderau C, Mezine F, Dagobert J, Bestard O, Moreso F, Villard J, Halleck F, Giral M, Brouard S, Danger R, Gourraud PA, Rabant M, Couzi L, Le Quintrec M, Kamar N, Morelon E, Vrtovsnik F, Taupin JL, Snanoudj R, Legendre C, Anglicheau D, Budde K, Lefaucheur C, Loupy A, Aubert O. Antibody Mediated Rejection and T-cell Mediated Rejection Molecular Signatures Using Next-Generation Sequencing in Kidney Transplant Biopsies. Transpl Int 2024; 37:13043. [PMID: 39050190 PMCID: PMC11267505 DOI: 10.3389/ti.2024.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Recently, interest in transcriptomic assessment of kidney biopsies has been growing. This study investigates the use of NGS to identify gene expression changes and analyse the pathways involved in rejection. An Illumina bulk RNA sequencing on the polyadenylated RNA of 770 kidney biopsies was conducted. Differentially-expressed genes (DEGs) were determined for AMR and TCMR using DESeq2. Genes were segregated according to their previous descriptions in known panels (microarray or the Banff Human Organ Transplant (B-HOT) panel) to obtain NGS-specific genes. Pathway enrichment analysis was performed using the Reactome and Kyoto Encyclopaedia of Genes and Genomes (KEGG) public repositories. The differential gene expression using NGS analysis identified 6,141 and 8,478 transcripts associated with AMR and TCMR. While most of the genes identified were included in the microarray and the B-HOT panels, NGS analysis identified 603 (9.8%) and 1,186 (14%) new specific genes. Pathways analysis showed that the B-HOT panel was associated with the main immunological processes involved during AMR and TCMR. The microarrays specifically integrated metabolic functions and cell cycle progression processes. Novel NGS-specific based transcripts associated with AMR and TCMR were discovered, which might represent a novel source of targets for drug designing and repurposing.
Collapse
Affiliation(s)
- Esteban Cortes Garcia
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Alessia Giarraputo
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Maud Racapé
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Valentin Goutaudier
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Cindy Ursule-Dufait
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | | | - Lucie Adoux
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut Cochin, Paris, France
| | - Marc Raynaud
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Clément Couderau
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Fariza Mezine
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Jessie Dagobert
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Oriol Bestard
- Department of Nephrology and Kidney Transplantation, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Department of Nephrology and Kidney Transplantation, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Fabian Halleck
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magali Giral
- Nantes Université, INSERM, CRT2I-Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Sophie Brouard
- Nantes Université, INSERM, CRT2I-Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Richard Danger
- Nantes Université, INSERM, CRT2I-Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Pierre-Antoine Gourraud
- Nantes Université, Centre Hospitalier Universitaire de Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des données, INSERM, Centre d’Investigation Clinique 1413, Nantes, France
| | - Marion Rabant
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Lionel Couzi
- Centre Hospitalier Universitaire de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France
| | - Moglie Le Quintrec
- Department of Nephrology Dialysis and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - François Vrtovsnik
- Department of Kidney Transplantation, Bichat Hospital, Assistance Publique—Hôpitaux de Paris (APHP), Paris, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Hôpital Saint-Louis Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Renaud Snanoudj
- Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital de Bicêtre, Service de Néphrologie et Transplantation, Le Kremlin-Bicêtre, France
| | - Christophe Legendre
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
- Department of Kidney Transplantation, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Dany Anglicheau
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
- Department of Kidney Transplantation, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Klemens Budde
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
- Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Alexandre Loupy
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
- Department of Kidney Transplantation, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Olivier Aubert
- Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
- Department of Kidney Transplantation, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
de Nattes T, Beadle J, Roufosse C. Biopsy-based transcriptomics in the diagnosis of kidney transplant rejection. Curr Opin Nephrol Hypertens 2024; 33:273-282. [PMID: 38411022 PMCID: PMC10990030 DOI: 10.1097/mnh.0000000000000974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW The last year has seen considerable progress in translational research exploring the clinical utility of biopsy-based transcriptomics of kidney transplant biopsies to enhance the diagnosis of rejection. This review will summarize recent findings with a focus on different platforms, potential clinical applications, and barriers to clinical adoption. RECENT FINDINGS Recent literature has focussed on using biopsy-based transcriptomics to improve diagnosis of rejection, in particular antibody-mediated rejection. Different techniques of gene expression analysis (reverse transcriptase quantitative PCR, microarrays, probe-based techniques) have been used either on separate samples with ideally preserved RNA, or on left over tissue from routine biopsy processing. Despite remarkable consistency in overall patterns of gene expression, there is no consensus on acceptable indications, or whether biopsy-based transcriptomics adds significant value at reasonable cost to current diagnostic practice. SUMMARY Access to biopsy-based transcriptomics will widen as regulatory approvals for platforms and gene expression models develop. Clinicians need more evidence and guidance to inform decisions on how to use precious biopsy samples for biopsy-based transcriptomics, and how to integrate results with standard histology-based diagnosis.
Collapse
Affiliation(s)
- Tristan de Nattes
- Univ Rouen Normandie, INSERM U1234, CHU Rouen, Department of Nephrology, Rouen, France
| | - Jack Beadle
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
6
|
Al Moussawy M, Lakkis ZS, Ansari ZA, Cherukuri AR, Abou-Daya KI. The transformative potential of artificial intelligence in solid organ transplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1361491. [PMID: 38993779 PMCID: PMC11235281 DOI: 10.3389/frtra.2024.1361491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 07/13/2024]
Abstract
Solid organ transplantation confronts numerous challenges ranging from donor organ shortage to post-transplant complications. Here, we provide an overview of the latest attempts to address some of these challenges using artificial intelligence (AI). We delve into the application of machine learning in pretransplant evaluation, predicting transplant rejection, and post-operative patient outcomes. By providing a comprehensive overview of AI's current impact, this review aims to inform clinicians, researchers, and policy-makers about the transformative power of AI in enhancing solid organ transplantation and facilitating personalized medicine in transplant care.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zoe S Lakkis
- Health Sciences Research Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zuhayr A Ansari
- Health Sciences Research Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aravind R Cherukuri
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Khodor I Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Roufosse C, Naesens M, Haas M, Lefaucheur C, Mannon RB, Afrouzian M, Alachkar N, Aubert O, Bagnasco SM, Batal I, Bellamy COC, Broecker V, Budde K, Clahsen-Van Groningen M, Coley SM, Cornell LD, Dadhania D, Demetris AJ, Einecke G, Farris AB, Fogo AB, Friedewald J, Gibson IW, Horsfield C, Huang E, Husain SA, Jackson AM, Kers J, Kikić Ž, Klein A, Kozakowski N, Liapis H, Mangiola M, Montgomery RA, Nankinvell B, Neil DAH, Nickerson P, Rabant M, Randhawa P, Riella LV, Rosales I, Royal V, Sapir-Pichhadze R, Sarder P, Sarwal M, Schinstock C, Stegall M, Solez K, van der Laak J, Wiebe C, Colvin RB, Loupy A, Mengel M. The Banff 2022 Kidney Meeting Work Plan: Data-driven refinement of the Banff Classification for renal allografts. Am J Transplant 2024; 24:350-361. [PMID: 37931753 PMCID: PMC11135910 DOI: 10.1016/j.ajt.2023.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.
Collapse
Affiliation(s)
- Candice Roufosse
- Department of Immunology and Inflammation, Faculty Medicine, Imperial College London, London, UK.
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Nephrology and Transplantation, Saint-Louis Hospital, Paris, France
| | - Roslyn B Mannon
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marjan Afrouzian
- Department of Pathology, University of Texas Medical Branch at Galveston, Texas, USA
| | - Nada Alachkar
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olivier Aubert
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ibrahim Batal
- Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA
| | | | - Verena Broecker
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin, Berlin, Germany
| | - Marian Clahsen-Van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Shana M Coley
- Transplant Translational Research, Arkana Laboratories, Arkansas, USA
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Darshana Dadhania
- Department Medicine, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Anthony J Demetris
- UPMC Hepatic and Transplantation Pathology, Pittsburg, Pennsylvania, USA
| | - Gunilla Einecke
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Germany
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Friedewald
- Comprehensive Transplant Center, Northwestern University, USA
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | | - Edmund Huang
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Syed A Husain
- Division of Nephrology, Columbia University, New York, New York, USA
| | | | - Jesper Kers
- Department of Pathology, Leiden University Medical Center, Netherlands; Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | | | - Helen Liapis
- Ludwig Maximillian University Munich, Nephrology Center, Germany
| | | | | | - Brian Nankinvell
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Desley A H Neil
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham and Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Nickerson
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Marion Rabant
- Pathology department, Necker-Enfants Malades Hospital, Paris, France
| | - Parmjeet Randhawa
- Pathology, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leonardo V Riella
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Immunopathology Research Laboratory, Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Virginie Royal
- Maisonneuve-Rosemont Hospital, University of Montreal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Division of Nephrology & Multiorgan Transplant Program, McGill University, Montreal, Quebec, Canada
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, University of Florida College of Medicine, Florida, USA
| | - Minnie Sarwal
- Division of MultiOrgan Transplantation, UCSF, San Francisco, California, USA
| | - Carrie Schinstock
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Stegall
- Department Transplantation Surgery, Mayo Clinic, Rochester, Massachusetts, USA
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | | - Chris Wiebe
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandre Loupy
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Zhang H, Haun RS, Collin F, Cassol C, Napier JOH, Wilson J, Hassen S, Ararat K, Boils C, Messias N, Caza TN, Cossey LN, Sharma S, Ambruzs JM, Agrawal N, Shekhtman G, Tian W, Srinivas T, Qu K, Woodward RN, Larsen CP, Stone S, Coley SM. Development and Validation of a Multiclass Model Defining Molecular Archetypes of Kidney Transplant Rejection: A Large Cohort Study of the Banff Human Organ Transplant Gene Expression Panel. J Transl Med 2024; 104:100304. [PMID: 38092179 DOI: 10.1016/j.labinv.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024] Open
Abstract
Gene expression profiling from formalin-fixed paraffin-embedded (FFPE) renal allograft biopsies is a promising approach for feasibly providing a molecular diagnosis of rejection. However, large-scale studies evaluating the performance of models using NanoString platform data to define molecular archetypes of rejection are lacking. We tested a diverse retrospective cohort of over 1400 FFPE biopsy specimens, rescored according to Banff 2019 criteria and representing 10 of 11 United Network of Organ Sharing regions, using the Banff Human Organ Transplant panel from NanoString and developed a multiclass model from the gene expression data to assign relative probabilities of 4 molecular archetypes: No Rejection, Antibody-Mediated Rejection, T Cell-Mediated Rejection, and Mixed Rejection. Using Least Absolute Shrinkage and Selection Operator regularized regression with 10-fold cross-validation fitted to 1050 biopsies in the discovery cohort and technically validated on an additional 345 biopsies, our model achieved overall accuracy of 85% in the discovery cohort and 80% in the validation cohort, with ≥75% positive predictive value for each class, except for the Mixed Rejection class in the validation cohort (positive predictive value, 53%). This study represents the technical validation of the first model built from a large and diverse sample of diagnostic FFPE biopsy specimens to define and classify molecular archetypes of histologically defined diagnoses as derived from Banff Human Organ Transplant panel gene expression profiling data.
Collapse
Affiliation(s)
| | | | | | | | | | - Jon Wilson
- Arkana Laboratories, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Naesens M, Roufosse C, Haas M, Lefaucheur C, Mannon RB, Adam BA, Aubert O, Böhmig GA, Callemeyn J, Groningen MCV, Cornell LD, Demetris AJ, Drachenberg CB, Einecke G, Fogo AB, Gibson IW, Halloran P, Hidalgo LG, Horsfield C, Huang E, Kikić Ž, Kozakowski N, Nankivell B, Rabant M, Randhawa P, Riella LV, Sapir-Pichhadze R, Schinstock C, Solez K, Tambur AR, Thaunat O, Wiebe C, Zielinski D, Colvin R, Loupy A, Mengel M. The Banff 2022 Kidney Meeting Report: Re-Appraisal of Microvascular Inflammation and the Role of Biopsy-Based Transcript Diagnostics. Am J Transplant 2023; 24:S1600-6135(23)00818-3. [PMID: 39491095 DOI: 10.1016/j.ajt.2023.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The XVI-th Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from 19th-23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. To mark the 30th anniversary of the first Banff Classification, pre-meeting discussions were held on the past, present, and future of the Banff Classification. This report is a summary of the meeting highlights that were most important in terms of their effect on the Classification, including discussions around microvascular inflammation and biopsy-based transcript analysis for diagnosis. In a post-meeting survey, agreement was reached on the delineation of the following phenotypes: (1) "Probable antibody-mediated rejection (AMR)", which represents DSA-positive cases with some histological features of AMR but below current thresholds for a definitive AMR diagnosis; and (2) "Microvascular inflammation (MVI), DSA-negative and C4d-negative", a phenotype of unclear cause requiring further study, which represents cases with MVI not explained by DSA. Although biopsy-based transcript diagnostics are considered promising and remain an integral part of the Banff Classification (limited to diagnosis of AMR), further work needs to be done to agree on the exact classifiers, thresholds, and clinical context of use.
Collapse
Affiliation(s)
- Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | - Candice Roufosse
- Department of Immunology and Inflammation, Faculty Medicine, Imperial College London, London, UK.
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carmen Lefaucheur
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Nephrology and Transplantation, Saint-Louis Hospital, Paris, France
| | | | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Olivier Aubert
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marian Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, The Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Gunilla Einecke
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Philip Halloran
- Department of Medicine, Alberta Transplant Applied Genomics Centre, Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Luis G Hidalgo
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Edmund Huang
- Department of Medicine, Division of Nephrology, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Željko Kikić
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | | | - Brian Nankivell
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Marion Rabant
- Pathology department, Necker-Enfants Malades Hospital, Paris, France
| | - Parmjeet Randhawa
- Pathology, Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo V Riella
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth Sapir-Pichhadze
- Division of Nephrology & Multi-Organ Transplant Program, McGill University, Montreal, Quebec, Canada
| | - Carrie Schinstock
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anat R Tambur
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Olivier Thaunat
- Department of Transplantation Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Chris Wiebe
- Department of Medicine and Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Dina Zielinski
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Robert Colvin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Loupy
- Université Paris Cité, INSERM, PARCC, Paris Institute for Transplantation and Organ Regeneration, France & Department of Transplantation, Necker Hospital, Paris, France
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Rosales IA, Smith RN, Colvin RB. Histologic and molecular features of antibody-mediated rejection. Curr Opin Organ Transplant 2023; 28:340-344. [PMID: 37526088 DOI: 10.1097/mot.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the highlights from recent research that involved pathological and molecular analysis of kidney allografts. RECENT FINDINGS As the research on antibody-mediated rejection (AMR) continues to evolve, studies are focused on identification through transcript studies of pathogenetic pathways involved in the development of AMR as well as refinement of diagnostic methods either by correlating Banff pathologic lesions with clinical and molecular data or by machine learning. Of note, the past year has generated high impact research that underscore the importance of pathologic and molecular correlations and detection of transcripts or gene sets that would aid prognostication. The studies involving refinement of pathologic criteria also highlight the continuous efforts to achieve diagnostic accuracy and standardization. SUMMARY Research involving histologic and molecular characteristics that define AMR are central to identification and understanding of pathogenetic pathways and remain critical in the development of diagnostic criteria.
Collapse
Affiliation(s)
- Ivy A Rosales
- Immunopathology Research Laboratory, Department of Pathology
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rex Neal Smith
- Immunopathology Research Laboratory, Department of Pathology
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B Colvin
- Immunopathology Research Laboratory, Department of Pathology
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Miller DV. Response to Manion, et al. Cardiovasc Pathol 2023; 63:107487. [PMID: 36306969 DOI: 10.1016/j.carpath.2022.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Dylan V Miller
- University of Utah, Electron Microscopy and Immunostains Lab, Intermountain Central Laboratory, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA.
| |
Collapse
|
12
|
The Histological Spectrum and Clinical Significance of T Cell-mediated Rejection of Kidney Allografts. Transplantation 2022; 107:1042-1055. [PMID: 36584369 DOI: 10.1097/tp.0000000000004438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T cell-mediated rejection (TCMR) remains a significant cause of long-term kidney allograft loss, either indirectly through induction of donor-specific anti-HLA alloantibodies or directly through chronic active TCMR. Whether found by indication or protocol biopsy, Banff defined acute TCMR should be treated with antirejection therapy and maximized maintenance immunosuppression. Neither isolated interstitial inflammation in the absence of tubulitis nor isolated tubulitis in the absence of interstitial inflammation results in adverse outcomes, and neither requires antirejection treatment. RNA gene expression analysis of biopsy material may supplement conventional histology, especially in ambiguous cases. Lesser degrees of tubular and interstitial inflammation (Banff borderline) may portend adverse outcomes and should be treated when found on an indication biopsy. Borderline lesions on protocol biopsies may resolve spontaneously but require close follow-up if untreated. Following antirejection therapy of acute TCMR, surveillance protocol biopsies should be considered. Minimally invasive blood-borne assays (donor-derived cell-free DNA and gene expression profiling) are being increasingly studied as a means of following stable patients in lieu of biopsy. The clinical benefit and cost-effectiveness require confirmation in randomized controlled trials. Treatment of acute TCMR is not standardized but involves bolus corticosteroids with lymphocyte depleting antibodies for severe, refractory, or relapsing cases. Arteritis may be found with acute TCMR, active antibody-mediated rejection, or mixed rejections and should be treated accordingly. The optimal treatment ofchronic active TCMR is uncertain. Randomized controlled trials are necessary to optimally define therapy.
Collapse
|
13
|
Fixed but Feasible: New Opportunities for Molecular Diagnostics in Transplantation. Transplantation 2022; 107:1023-1024. [PMID: 36477569 DOI: 10.1097/tp.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Varol H, Ernst A, Cristoferi I, Arns W, Baan CC, van Baardwijk M, van den Bosch T, Eckhoff J, Harth A, Hesselink DA, van Kemenade FJ, de Koning W, Kurschat C, Minnee RC, Mustafa DAM, Reinders MEJ, Shahzad-Arshad SP, Snijders MLH, Stippel D, Stubbs AP, von der Thüsen J, Wirths K, Becker JU, Clahsen-van Groningen MC. Feasibility and Potential of Transcriptomic Analysis Using the NanoString nCounter Technology to Aid the Classification of Rejection in Kidney Transplant Biopsies. Transplantation 2022; 107:903-912. [PMID: 36413151 PMCID: PMC10065817 DOI: 10.1097/tp.0000000000004372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Transcriptome analysis could be an additional diagnostic parameter in diagnosing kidney transplant (KTx) rejection. Here, we assessed feasibility and potential of NanoString nCounter analysis of KTx biopsies to aid the classification of rejection in clinical practice using both the Banff-Human Organ Transplant (B-HOT) panel and a customized antibody-mediated rejection (AMR)-specific NanoString nCounter Elements (Elements) panel. Additionally, we explored the potential for the classification of KTx rejection building and testing a classifier within our dataset. METHODS Ninety-six formalin-fixed paraffin-embedded KTx biopsies were retrieved from the archives of the ErasmusMC Rotterdam and the University Hospital Cologne. Biopsies with AMR, borderline or T cell-mediated rejections (BLorTCMR), and no rejection were compared using the B-HOT and Elements panels. RESULTS High correlation between gene expression levels was found when comparing the 2 chemistries pairwise (r = 0.76-0.88). Differential gene expression (false discovery rate; P < 0.05) was identified in biopsies diagnosed with AMR (B-HOT: 294; Elements: 76) and BLorTCMR (B-HOT: 353; Elements: 57) compared with no rejection. Using the most predictive genes from the B-HOT analysis and the Element analysis, 2 least absolute shrinkage and selection operators-based regression models to classify biopsies as AMR versus no AMR (BLorTCMR or no rejection) were developed achieving an receiver-operating-characteristic curve of 0.994 and 0.894, sensitivity of 0.821 and 0.480, and specificity of 1.00 and 0.979, respectively, during cross-validation. CONCLUSIONS Transcriptomic analysis is feasible on KTx biopsies previously used for diagnostic purposes. The B-HOT panel has the potential to differentiate AMR from BLorTCMR or no rejection and could prove valuable in aiding kidney transplant rejection classification.
Collapse
Affiliation(s)
- Hilal Varol
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Cologne, Germany
| | - Iacopo Cristoferi
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wolfgang Arns
- Cologne Merheim Medical Center, Cologne General Hospital, Cologne, Germany
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry van den Bosch
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jennifer Eckhoff
- Department of General Visceral Cancer and Transplant Surgery Transplant Center Cologne, University of Cologne Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Ana Harth
- Cologne Merheim Medical Center, Cologne General Hospital, Cologne, Germany
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert J van Kemenade
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Christine Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Robert C Minnee
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Division of HPB & Transplant Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Malou L H Snijders
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk Stippel
- Department of General Visceral Cancer and Transplant Surgery Transplant Center Cologne, University of Cologne Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Andrew P Stubbs
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Clinical Bioinformatics Unit, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan von der Thüsen
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katharina Wirths
- Department of Internal Medicine, Faculty of Medicine, University Bonn, Bonn, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Marian C Clahsen-van Groningen
- Department of Pathology, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|