1
|
Gao Q, Li X, Huang T, Gao L, Wang S, Deng Y, Wang F, Xue X, Duan R. Angiotensin-(1-7) relieves behavioral defects and α-synuclein expression through NEAT1/miR-153-3p axis in Parkinson's disease. Aging (Albany NY) 2024; 16:206028. [PMID: 39422618 DOI: 10.18632/aging.206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 10/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, whose characteristic pathology involves progressive deficiency of dopaminergic neurons and generation of Lewy bodies (LBs). Aggregated and misfolded α-synuclein (α-syn) is the major constituent of LBs. As the newly discovered pathway of renin-angiotensin system (RAS), Angiotensin-(1-7) (Ang-(1-7)) and receptor Mas have attracted increasing attentions for their correlation with PD, but underlying mechanisms remain not fully clear. Based on above, this study established PD models of mice and primary dopaminergic neurons with AAV-hα-syn(A53T), then discussed the effects of Ang-(1-7)/Mas on α-syn level and neuronal apoptosis for these models combined with downstream long non-coding RNA (lncRNA) and microRNA (miRNA). Results showed that Ang-(1-7) alleviated behavioral impairments, rescued dopaminergic neurons loss and lowered α-syn expression in substantia nigra of hα-syn(A53T) overexpressed PD mice. We also discovered that Ang-(1-7) decreased level of α-syn and apoptosis in the hα-syn(A53T) overexpressed dopaminergic neurons through lncRNA NEAT1/miR-153-3p axis. Moreover, miR-153-3p level in peripheral blood is found negatively correlated with that of α-syn. In conclusion, our work not only showed neuroprotective effect and underlying mechanisms for Ang-(1-7) on α-syn in vivo and vitro, but also brought new hope on miR-153-3p and NEAT1 for diagnosis and treatment in PD.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xiaoyuan Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, P.R. China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| |
Collapse
|
2
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
3
|
Li J, Liu W, Anniwaer A, Li B, Chen Y, Yu Z, Yu X. The Role of MicroRNAs in Predicting the Neurological Outcome of Patients with Subarachnoid Hemorrhage: A Meta-analysis. Cell Mol Neurobiol 2023; 43:2883-2893. [PMID: 36943493 DOI: 10.1007/s10571-023-01327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic cerebrovascular disease with an extremely poor prognosis. The molecular mechanism and biomarkers involved in neurological outcome after SAH still need to be explored. This study assessed the microRNA expression characteristics of SAH patients with different neurological outcomes by meta-analysis. Public databases were searched from database inception until December 2022. The study reported that microRNA expression data in SAH patients with different neurological outcomes were included in the analysis. The differential expression of miRNAs was evaluated by meta-analysis. Overrepresentation analysis was performed for the targeted genes of significant miRNAs. The XGBoost algorithm was used to assess the predictive ability for neurological outcomes with clinical characteristics and significantly expressed miRNAs. Seven studies were finally included in the meta-analysis. The results showed that the levels of miR-152-3p (SMD: - 0.230; 95% CI - 0.389, - 0.070; padj = 0.041), miR-221-3p (SMD: - 0.286; 95% CI - 0.446, - 0.127; padj = 0.007), and miR-34a-5p (SMD: - 0.227; 95% CI - 0.386, - 0.067; padj = 0.041) were significantly lower in SAH patients with good neurological outcomes than in those with poor neurological outcomes. The PI3K-AKT signaling pathway may have an important role in neurological recovery after SAH. Based on the XGBoost algorithm, the neurological outcome could be accurately predicted with clinical characteristics plus the three miRNAs. The expression levels of miR-152-3p, miR-221-3p, and miR-34a-5p were significantly lower in patients with good neurological outcomes than in those with poor outcomes. These miRNAs can serve as potential predictive biomarkers for neurological outcomes. The molecular mechanism and biomarkers involved in neurological outcome after SAH still need to be explored. Our study analyzed microRNA expression characteristics of SAH patients with different neurological outcomes by meta-analysis. After analyze studies reporting the microRNA expression data in SAH patients with different neurological outcomes, results show that the levels of miR-152-3p, miR-221-3p, and miR-34a-5p were significantly lower in SAH patients with good neurological outcomes than in those with poor neurological outcomes. The PI3K-AKT signaling pathway may have an important role in neurological recovery after SAH. Based on the XGBoost algorithm, the neurological outcome could be accurately predicted with clinical characteristics plus the three miRNAs.
Collapse
Affiliation(s)
- Jian Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China
| | - Wei Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China
| | - Ankaerjiang Anniwaer
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China
| | - Bo Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China
| | - Yutang Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China
| | - Zhaoxia Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China.
| | - Xiangyou Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, No.137 Liyushan South Road, Urumqi, 830054, Xinjiang Province, China.
| |
Collapse
|
4
|
Abstract
Stroke is a sudden and rapidly progressing ischemic or hemorrhagic cerebrovascular disease. When stroke damages the brain, the immune system becomes hyperactive, leading to systemic inflammatory response and immunomodulatory disorders, which could significantly impact brain damage, recovery, and prognosis of stroke. Emerging researches suggest that ischemic stroke-induced spleen contraction could activate a peripheral immune response, which may further aggravate brain injury. This review focuses on hemorrhagic strokes including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) and discusses the central nervous system-peripheral immune interactions after hemorrhagic stroke induction. First, inflammatory progression after ICH and SAH is investigated. As a part of this review, we summarize the various kinds of inflammatory cell infiltration to aggravate brain injury after blood-brain barrier interruption induced by hemorrhagic stroke. Then, we explore hemorrhagic stroke-induced systemic inflammatory response syndrome (SIRS) and discuss the interactions of CNS and peripheral inflammatory response. In addition, potential targets related to inflammatory response for ICH and SAH are discussed in this review, which may lead to novel therapeutic strategies for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
6
|
Synthesis of alamandine glycoside analogs as new drug candidates to antagonize the MrgD receptor for pain relief. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|