1
|
Xiang Z, Li J, Zeng H, Xiang X, Gao F, Wang K, Wei X, Zheng S, Xu X. Current Understanding of Marginal Grafts in Liver Transplantation. Aging Dis 2024:AD.2024.0214. [PMID: 38607739 DOI: 10.14336/ad.2024.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
End-stage liver disease (ESLD), stemming from a spectrum of chronic liver pathologies including chronic liver failure, acute cirrhosis decompensation and hepatocellular carcinoma, imposes a significant global healthcare burden. Liver transplantation (LT) remains the only treatment for ESLD. However, the escalating mortality on transplant waitlists has prompted the utilization of marginal liver grafts in LT procedures. These grafts primarily encompass elderly livers, steatotic livers, livers from donation after circulatory death, split livers and those infected with the hepatitis virus. While the expansion of the donor pool offers promise, it also introduces concomitant risks. These encompass graft failure, biliary and cardiovascular complications, the recurrence of liver disease and reduced patient and graft survival. Consequently, various established strategies, ranging from improved donor-recipient matching to surgical interventions, have emerged to mitigate these risks. This article undertakes a comprehensive assessment of the current landscape, evaluating the viability of diverse marginal liver grafts. Additionally, it synthesizes approaches aimed at enhancing the quality of such marginal liver grafts. The overarching objective is to augment the donor pool and ameliorate the risk factors associated with the shortage of liver grafts.
Collapse
Affiliation(s)
- Ze Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huixuan Zeng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaonan Xiang
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, Cambridgeshire, UK
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Shusen Zheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| |
Collapse
|
2
|
Arjmand B, Alavi-Moghadam S, Faraji Z, Aghajanpoor-Pasha M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezazadeh-Mafi A, Rezaei-Tavirani M, Irompour A. The Potential Role of Intestinal Stem Cells and Microbiota for the Treatment of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:115-128. [PMID: 38811486 DOI: 10.1007/5584_2024_803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Colorectal cancer is a global health concern with high incidence and mortality rates. Conventional treatments like surgery, chemotherapy, and radiation therapy have limitations in improving patient survival rates. Recent research highlights the role of gut microbiota and intestinal stem cells in maintaining intestinal health and their potential therapeutic applications in colorectal cancer treatment. The interaction between gut microbiota and stem cells influences epithelial self-renewal and overall intestinal homeostasis. Novel therapeutic approaches, including immunotherapy, targeted therapy, regenerative medicine using stem cells, and modulation of gut microbiota, are being explored to improve treatment outcomes. Accordingly, this chapter provides an overview of the potential therapeutic applications of gut microbiota and intestinal stem cells in treating colorectal cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh-Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | | | - Arsalan Irompour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Reseland JE, Heyward CA, Samara A. Revisiting ameloblastin; addressing the EMT-ECM axis above and beyond oral biology. Front Cell Dev Biol 2023; 11:1251540. [PMID: 38020879 PMCID: PMC10679718 DOI: 10.3389/fcell.2023.1251540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Ameloblastin (AMBN) is best characterized for its role in dental enamel formation, regulating cell differentiation and mineralization, and cell matrix adhesion. However, AMBN has also been detected in mesenchymal stem cells in addition to bone, blood, and adipose tissue. Using immunofluorescence in a pilot scheme, we identified that AMBN is expressed in different parts of the gastrointestinal (GI) tract. AMBN mRNA and protein detection in several tissues along the length of the GI tract suggests a role for AMBN in the structure and tissue integrity of the extracellular matrix (ECM). Intracellular AMBN expression in subsets of cells indicates a potential alternative role in signaling processes. Of note, our previous functional AMBN promoter analyses had shown that it contains epithelial-mesenchymal transition (EMT) regulatory elements. ΑΜΒΝ is herein presented as a paradigm shift of the possible associations and the spatiotemporal regulation of the ECM regulating the EMT and vice versa, using the example of AMBN expression beyond oral biology.
Collapse
Affiliation(s)
- Janne E. Reseland
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Catherine A. Heyward
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Athina Samara
- Center for Functional Tissue Reconstruction (FUTURE), University of Oslo, Oslo, Norway
- Department of Biomaterials and Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
5
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
6
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Li C, Wen R, Liu D, Yan L, Gong Q, Yu H. Assessment of the Potential of Sarcandra glabra (Thunb.) Nakai. in Treating Ethanol-Induced Gastric Ulcer in Rats Based on Metabolomics and Network Analysis. Front Pharmacol 2022; 13:810344. [PMID: 35903344 PMCID: PMC9315220 DOI: 10.3389/fphar.2022.810344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric ulcer (GU) is one of the most commonly diagnosed diseases worldwide, threatening human health and seriously affecting quality of life. Reports have shown that the Chinese herbal medicine Sarcandra glabra (Thunb.) Nakai (SGN) can treat GU. However, its pharmacological effects deserve further validation; in addition, its mechanism of action is unclear. An acute gastric ulcer (AGU) rat model induced by alcohol was used to evaluate the gastroprotective effect of SGN by analysis of the histopathological changes in stomach tissue and related cytokine levels; the potential mechanisms of action of SGN were investigated via serum metabolomics and network pharmacology. Differential metabolites of rat serum were identified by metabolomics and the metabolic pathways of the identified metabolites were enriched via MetaboAnalyst. Furthermore, the critical ingredients and candidate targets of SGN anti-AGU were elucidated. A compound-reaction-enzyme-gene network was established using Cytoscape version 3.8.2 based on integrated analysis of metabolomics and network pharmacology. Finally, molecular docking was applied to verify the acquired key targets. The results showed that SGN exerted a certain gastroprotective effect via multiple pathways and targets. The effects of SGN were mainly caused by the key active ingredients isofraxidin, rosmarinic, and caffeic acid, which regulate hub targets, such as PTGS2, MAPK1, and KDR, which maintain the homeostasis of related metabolites. Signal pathways involved energy metabolism as well as immune and amino acid metabolism. Overall, the multi-omics techniques were proven to be promising tools in illuminating the mechanism of action of SGN in protecting against diseases. This integrated strategy provides a basis for further research and clinical application of SGN.
Collapse
Affiliation(s)
- Chao Li
- School of Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rou Wen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - DeWen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - LiPing Yan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Qianfeng Gong, ; Huan Yu,
| |
Collapse
|
8
|
Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|