1
|
Ren J, Li R, Meng C, Xu Y, Li C. Identification of BCL3 as a biomarker for chondrocyte programmed cell death in osteoarthritis. Int J Exp Pathol 2025; 106:e12522. [PMID: 39676743 DOI: 10.1111/iep.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Osteoarthritis (OA) is a condition that is widely prevalent and causes joint pain and disability, with programmed cell death (PCD) playing a role in its pathogenesis. This study aimed to identify biomarkers associated with PCD in OA and explore their potential roles. Three RNA-sequencing datasets (GSE114007, GSE51588 and GSE220243) related to OA were analysed. Differential expression and weighted gene co-expression network identified key differentially expressed PCD-related genes (DE-PRMGs). Potential biomarkers were identified and validated through receiver operating characteristic (ROC) curves, correlation analyses, gene set enrichment analysis, single-cell expression and RT-qPCR. A total of 45 DE-PRMGs were identified, affecting pathways like TNF signalling and RNA degradation. BCL3, TREM2 and NRP2 were prioritized as potential OA biomarkers, which are associated with ribosome function and immune cell infiltration and potentially linked to PCD. The functional role of one of the molecules identified, BCL3, was explored further using a cell model of inflammation induced chondrocytes. BCL3 was significantly down regulated in OA samples from the public dataset and clinical samples analysed by RT-qPCR. BCL3 overexpression reduced apoptosis in chondrocytes stimulated with inflammatory cytokines. Thus the functional studies highlighted the anti-apoptotic role of BCL3 in chondrocytes and provide new insights into OA pathogenesis with potential for future therapeutic development.
Collapse
Affiliation(s)
- Junxiao Ren
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rui Li
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chen Meng
- Kunming Medical University, Kunming, Yunnan, China
| | - Yongqing Xu
- The 920th Hospital of Joint Logistics SupportForce of PLA, Kunming, Yunnan, China
| | - Chuan Li
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
3
|
Zhao Q, Feng W, Gao P, Han Y, Zhang S, Zhou A, Shi L, Zhang J. Deoxynivalenol-Induced Spleen Toxicity in Mice: Inflammation, Endoplasmic Reticulum Stress, Macrophage Polarization, and the Dysregulation of LncRNA Expression. Toxins (Basel) 2024; 16:432. [PMID: 39453208 PMCID: PMC11511314 DOI: 10.3390/toxins16100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.Z.); (W.F.); (P.G.); (Y.H.); (S.Z.); (A.Z.); (L.S.)
| |
Collapse
|
4
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
5
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
6
|
Gerasimova T, Poberezhniy D, Nenasheva V, Stepanenko E, Arsenyeva E, Novosadova L, Grivennikov I, Illarioshkin S, Lagarkova M, Tarantul V, Novosadova E. Inflammatory Intracellular Signaling in Neurons Is Influenced by Glial Soluble Factors in iPSC-Based Cell Model of PARK2-Associated Parkinson's Disease. Int J Mol Sci 2024; 25:9621. [PMID: 39273568 PMCID: PMC11395490 DOI: 10.3390/ijms25179621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neuroinflammation is considered to be one of the driving factors in Parkinson's disease (PD). This study was conducted using neuronal and glial cell cultures differentiated from induced pluripotent stem cells (iPSC) of healthy donors (HD) and PD patients with different PARK2 mutations (PD). Based on the results of RNA sequencing, qPCR and ELISA, we revealed transcriptional and post-transcriptional changes in HD and PD neurons cultivated in HD and PD glial-conditioned medium. We demonstrated that if one or both of the components of the system, neurons or glia, is Parkin-deficient, the interaction resulted in the down-regulation of a number of key genes related to inflammatory intracellular pathways and negative regulation of apoptosis in neurons, which might be neuroprotective. In PD neurons, the stress-induced up-regulation of APLNR was significantly stronger compared to HD neurons and was diminished by glial soluble factors, both HD and PD. PD neurons in PD glial conditioned medium increased APLN expression and also up-regulated apelin synthesis and release into intracellular fluid, which represented another compensatory action. Overall, the reported results indicate that neuronal self-defense mechanisms contribute to cell survival, which might be characteristic of PD patients with Parkin-deficiency.
Collapse
Affiliation(s)
- Tatiana Gerasimova
- Laboratory of Translative Biomedicine, Lopukhin Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Daniil Poberezhniy
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Elena Arsenyeva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Lyudmila Novosadova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Igor Grivennikov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | | | - Maria Lagarkova
- Laboratory of Translative Biomedicine, Lopukhin Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia;
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| | - Ekaterina Novosadova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (D.P.); (E.S.); (E.A.); (L.N.); (I.G.); (V.T.); (E.N.)
| |
Collapse
|
7
|
Liu S, Wang H, Li J, Gao J, Yu L, Wei X, Cui M, Zhao Y, Liang Y, Wang H. Loss of Bcl-3 regulates macrophage polarization by promoting macrophage glycolysis. Immunol Cell Biol 2024; 102:605-617. [PMID: 38804132 DOI: 10.1111/imcb.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/27/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
M1/M2 macrophage polarization plays an important role in regulating the balance of the microenvironment within tissues. Moreover, macrophage polarization involves the reprogramming of metabolism, such as glucose and lipid metabolism. Transcriptional coactivator B-cell lymphoma-3 (Bcl-3) is an atypical member of the IκB family that controls inflammatory factor levels in macrophages by regulating nuclear factor kappa B pathway activation. However, the relationship between Bcl-3 and macrophage polarization and metabolism remains unclear. In this study, we show that the knockdown of Bcl-3 in macrophages can regulate glycolysis-related gene expression by promoting the activation of the nuclear factor kappa B pathway. Furthermore, the loss of Bcl-3 was able to promote the interferon gamma/lipopolysaccharide-induced M1 macrophage polarization by accelerating glycolysis. Taken together, these results suggest that Bcl-3 may be a candidate gene for regulating M1 polarization in macrophages.
Collapse
Affiliation(s)
- Shengnan Liu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hao Wang
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Jiaoyang Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jingtao Gao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Li Yu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Wei
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengchao Cui
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuxin Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Zhao Z, Yuan Y, Li S, Wang X, Yang X. Natural compounds from herbs and nutraceuticals as glycogen synthase kinase-3β inhibitors in Alzheimer's disease treatment. CNS Neurosci Ther 2024; 30:e14885. [PMID: 39129397 PMCID: PMC11317746 DOI: 10.1111/cns.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathogenesis is complex. The pathophysiology is not fully understood, and safe and effective treatments are needed. Glycogen synthase kinase 3β (GSK-3β) mediates AD progression through several signaling pathways. Recently, several studies have found that various natural compounds from herbs and nutraceuticals can significantly improve AD symptoms. AIMS This review aims to provide a comprehensive summary of the potential neuroprotective impacts of natural compounds as inhibitors of GSK-3β in the treatment of AD. MATERIALS AND METHODS We conducted a systematic literature search on PubMed, ScienceDirect, Web of Science, and Google Scholar, focusing on in vitro and in vivo studies that investigated natural compounds as inhibitors of GSK-3β in the treatment of AD. RESULTS The mechanism may be related to GSK-3β activation inhibition to regulate amyloid beta production, tau protein hyperphosphorylation, cell apoptosis, and cellular inflammation. By reviewing recent studies on GSK-3β inhibition in phytochemicals and AD intervention, flavonoids including oxyphylla A, quercetin, morin, icariin, linarin, genipin, and isoorientin were reported as potent GSK-3β inhibitors for AD treatment. Polyphenols such as schisandrin B, magnolol, and dieckol have inhibitory effects on GSK-3β in AD models, including in vivo models. Sulforaphene, ginsenoside Rd, gypenoside XVII, falcarindiol, epibrassinolides, 1,8-Cineole, and andrographolide are promising GSK-3β inhibitors. CONCLUSIONS Natural compounds from herbs and nutraceuticals are potential candidates for AD treatment. They may qualify as derivatives for development as promising compounds that provide enhanced pharmacological characteristics.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ye Yuan
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shuang Li
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaofeng Wang
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
9
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
10
|
Guo S, Yang J. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Alzheimers Res Ther 2024; 16:120. [PMID: 38824563 PMCID: PMC11144322 DOI: 10.1186/s13195-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Transcriptome-wide association study (TWAS) is an influential tool for identifying genes associated with complex diseases whose genetic effects are likely mediated through transcriptome. TWAS utilizes reference genetic and transcriptomic data to estimate effect sizes of genetic variants on gene expression (i.e., effect sizes of a broad sense of expression quantitative trait loci, eQTL). These estimated effect sizes are employed as variant weights in gene-based association tests, facilitating the mapping of risk genes with genome-wide association study (GWAS) data. However, most existing TWAS of Alzheimer's disease (AD) dementia are limited to studying only cis-eQTL proximal to the test gene. To overcome this limitation, we applied the Bayesian Genome-wide TWAS (BGW-TWAS) method to leveraging both cis- and trans- eQTL of brain and blood tissues, in order to enhance mapping risk genes for AD dementia. METHODS We first applied BGW-TWAS to the Genotype-Tissue Expression (GTEx) V8 dataset to estimate cis- and trans- eQTL effect sizes of the prefrontal cortex, cortex, and whole blood tissues. Estimated eQTL effect sizes were integrated with the summary data of the most recent GWAS of AD dementia to obtain BGW-TWAS (i.e., gene-based association test) p-values of AD dementia per gene per tissue type. Then we used the aggregated Cauchy association test to combine TWAS p-values across three tissues to obtain omnibus TWAS p-values per gene. RESULTS We identified 85 significant genes in prefrontal cortex, 82 in cortex, and 76 in whole blood that were significantly associated with AD dementia. By combining BGW-TWAS p-values across these three tissues, we obtained 141 significant risk genes including 34 genes primarily due to trans-eQTL and 35 mapped risk genes in GWAS Catalog. With these 141 significant risk genes, we detected functional clusters comprised of both known mapped GWAS risk genes of AD in GWAS Catalog and our identified TWAS risk genes by protein-protein interaction network analysis, as well as several enriched phenotypes related to AD. CONCLUSION We applied BGW-TWAS and aggregated Cauchy test methods to integrate both cis- and trans- eQTL data of brain and blood tissues with GWAS summary data, identifying 141 TWAS risk genes of AD dementia. These identified risk genes provide novel insights into the underlying biological mechanisms of AD dementia and potential gene targets for therapeutics development.
Collapse
Affiliation(s)
- Shuyi Guo
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Bongartz H, Bradfield C, Gross J, Fraser I, Nita-Lazar A, Meier-Schellersheim M. IL-10 dependent adaptation allows macrophages to adjust inflammatory responses to TLR4 stimulation history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587272. [PMID: 38654826 PMCID: PMC11037870 DOI: 10.1101/2024.03.28.587272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
During an infection, innate immune cells must adjust nature and strength of their responses to changing pathogen abundances. To determine how stimulation of the pathogen sensing TLR4 shapes subsequent macrophage responses, we systematically varied priming and restimulation concentrations of its ligand KLA. We find that different priming strengths have very distinct effects at multiple stages of the signaling response, including receptor internalization, MAPK activation, cytokine and chemokine production, and nuclear translocation and chromatin association of NFκB and IκB members. In particular, restimulation-induced TNF-α production required KLA doses equal to or greater than those used for prior exposure, indicating that macrophages can detect and adaptively respond to changing TLR4 stimuli. Interestingly, while such adaptation was dependent on the anti-inflammatory cytokine IL-10, exogenous concentrations of IL-10 corresponding to those secreted after strong priming did not exert suppressive effects on TNF-α without such prior priming, confirming the critical role of TLR4 stimulation history.
Collapse
Affiliation(s)
- H. Bongartz
- Computational Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C. Bradfield
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J. Gross
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I.D.C. Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A. Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M. Meier-Schellersheim
- Computational Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Carbo-Meix A, Guijarro F, Wang L, Grau M, Royo R, Frigola G, Playa-Albinyana H, Buhler MM, Clot G, Duran-Ferrer M, Lu J, Granada I, Baptista MJ, Navarro JT, Espinet B, Puiggros A, Tapia G, Bandiera L, De Canal G, Bonoldi E, Climent F, Ribera-Cortada I, Fernandez-Caballero M, De la Banda E, Do Nascimento J, Pineda A, Vela D, Rozman M, Aymerich M, Syrykh C, Brousset P, Perera M, Yanez L, Ortin JX, Tuset E, Zenz T, Cook JR, Swerdlow SH, Martin-Subero JI, Colomer D, Matutes E, Bea S, Costa D, Nadeu F, Campo E. BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases. Haematologica 2024; 109:493-508. [PMID: 37560801 PMCID: PMC10828791 DOI: 10.3324/haematol.2023.283209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.
Collapse
Affiliation(s)
- Anna Carbo-Meix
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Francesca Guijarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Luojun Wang
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Romina Royo
- Barcelona Supercomputing Center (BSC), Barcelona
| | - Gerard Frigola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Marco M Buhler
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Marti Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Junyan Lu
- European Molecular Biology Laboratory, Heidelberg
| | - Isabel Granada
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Maria-Joao Baptista
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Jose-Tomas Navarro
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain and Translational Research on Hematological Neoplasms Group (GRETNHE) - Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, Badalona
| | - Laura Bandiera
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Gabriella De Canal
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Emanuela Bonoldi
- Anatomia Istologia Patologica e Citogenetica, Dipartimento Ematologia, Oncologia e Medicina Molecolare, Niguarda Cancer Center, Milano
| | - Fina Climent
- Department o f Pathology, H ospital Universitari d e Bellvitge, I nstitut d'Investigació B iomèdica d e Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | - Mariana Fernandez-Caballero
- Department of Hematology-Laboratory, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona
| | - Esmeralda De la Banda
- Laboratory of Hematology, Hospital Universitari Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet De Llobregat
| | | | | | - Dolors Vela
- Hematologia Clínica, Hospital General de Granollers, Granollers
| | - Maria Rozman
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Charlotte Syrykh
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9
| | - Pierre Brousset
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059, Toulouse CEDEX 9, France; INSERM UMR1037 Cancer Research Center of Toulouse (CRCT), ERL 5294 National Center for Scientific Research (CNRS), University of Toulouse III Paul-Sabatier, Toulouse, France; Institut Carnot Lymphome CALYM, Laboratoire d'Excellence 'TOUCAN', Toulouse
| | - Miguel Perera
- Hematology Department, Hospital Dr Negrín, Las Palmas de Gran Canaria
| | - Lucrecia Yanez
- Hematology Department, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla (IDIVAL), Santander
| | | | - Esperanza Tuset
- Hematology Department, Institut Català d'Oncologia, Hospital Dr. Josep Trueta, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zurich
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Estella Matutes
- Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona
| | - Dolors Costa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Hematopathology Section, laboratory of Pathology, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Barcelona.
| |
Collapse
|
13
|
Shigesada N, Shikada N, Shirai M, Toriyama M, Higashijima F, Kimura K, Kondo T, Bessho Y, Shinozuka T, Sasai N. Combination of blockade of endothelin signalling and compensation of IGF1 expression protects the retina from degeneration. Cell Mol Life Sci 2024; 81:51. [PMID: 38252153 PMCID: PMC10803390 DOI: 10.1007/s00018-023-05087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.
Collapse
Affiliation(s)
- Naoya Shigesada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Naoya Shikada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Michinori Toriyama
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, 669-1337, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, 755-0046, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Yasumasa Bessho
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takuma Shinozuka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Noriaki Sasai
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| |
Collapse
|
14
|
Saamarthy K, Ahlqvist K, Daams R, Balagunaseelan N, Rinaldo-Matthis A, Kazi JU, Sime W, Massoumi R. Discovery of a small molecule that inhibits Bcl-3-mediated cyclin D1 expression in melanoma cells. BMC Cancer 2024; 24:103. [PMID: 38238702 PMCID: PMC10795364 DOI: 10.1186/s12885-023-11663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Molecular targeted therapy using a drug that suppresses the growth and spread of cancer cells via inhibition of a specific protein is a foundation of precision medicine and treatment. High expression of the proto-oncogene Bcl-3 promotes the proliferation and metastasis of cancer cells originating from tissues such as the colon, prostate, breast, and skin. The development of novel drugs targeting Bcl-3 alone or in combination with other therapies can cure these patients or prolong their survival. As a proof of concept, in the present study, we focused on metastatic melanoma as a model system. High-throughput screening and in vitro experiments identified BCL3ANT as a lead molecule that could interfere with Bcl-3-mediated cyclin D1 expression and cell proliferation and migration in melanoma. In experimental animal models of melanoma, it was demonstrated that the use of a Bcl-3 inhibitor can influence the survival of melanoma cells. Since there are no other inhibitors against Bcl-3 in the clinical pipeline for cancer treatment, this presents a unique opportunity to develop a highly specific drug against malignant melanoma to meet an urgent clinical need.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Kristofer Ahlqvist
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Renée Daams
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Navisraj Balagunaseelan
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumor Pathology, Lund University, Medicon Village, 22383, Lund, Sweden.
| |
Collapse
|
15
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
16
|
Meng Y, Yang Z, Quan Y, Zhao S, Zhang L, Yang L. Regulation of IkappaB Protein Expression by Early Gestation in the Thymus of Ewes. Vet Sci 2023; 10:462. [PMID: 37505866 PMCID: PMC10384501 DOI: 10.3390/vetsci10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The thymus is an essential component of maternal immune systems that play key roles in recognizing the placenta as immunologically foreign. The inhibitor of the NF-κB (IκB) family has essential effects on the NF-κB pathway; however, it is unclear whether early pregnancy modulates the expression of the IκB family in the thymus. In this study, maternal thymuses were sampled on day 16 of nonpregnancy and different gestation stages in the ovine, and the expression of IκB proteins was analyzed. The data showed that B cell leukemia-3 and IκBβ increased; however, IκBα, IκBε, and IKKγ deceased during gestation. Furthermore, there was an increase in IκBNS and IκBζ expression values on day 13 of pregnancy; however, this decreased on day 25 of gestation. In summary, the expression of the IκB family was modulated in the thymus during early gestation, suggesting that the maternal thymus can be associated with maternal immunologic tolerance and pregnancy establishment in ewes.
Collapse
Affiliation(s)
- Yao Meng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaodong Quan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
17
|
Brandstoetter T, Schmoellerl J, Grausenburger R, Kollmann S, Doma E, Huuhtanen J, Klampfl T, Eder T, Grebien F, Hoermann G, Zuber J, Mustjoki S, Maurer B, Sexl V. SBNO2 is a critical mediator of STAT3-driven hematological malignancies. Blood 2023; 141:1831-1845. [PMID: 36630607 PMCID: PMC10646773 DOI: 10.1182/blood.2022018494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Gain-of-function mutations in the signal transducer and activator of transcription 3 (STAT3) gene are recurrently identified in patients with large granular lymphocytic leukemia (LGLL) and in some cases of natural killer (NK)/T-cell and adult T-cell leukemia/lymphoma. To understand the consequences and molecular mechanisms contributing to disease development and oncogenic transformation, we developed murine hematopoietic stem and progenitor cell models that express mutated STAT3Y640F. These cells show accelerated proliferation and enhanced self-renewal potential. We integrated gene expression analyses and chromatin occupancy profiling of STAT3Y640F-transformed cells with data from patients with T-LGLL. This approach uncovered a conserved set of direct transcriptional targets of STAT3Y640F. Among these, strawberry notch homolog 2 (SBNO2) represents an essential transcriptional target, which was identified by a comparative genome-wide CRISPR/Cas9-based loss-of-function screen. The STAT3-SBNO2 axis is also present in NK-cell leukemia, T-cell non-Hodgkin lymphoma, and NPM-ALK-rearranged T-cell anaplastic large cell lymphoma (T-ALCL), which are driven by STAT3-hyperactivation/mutation. In patients with NPM-ALK+ T-ALCL, high SBNO2 expression correlates with shorter relapse-free and overall survival. Our findings identify SBNO2 as a potential therapeutic intervention site for STAT3-driven hematopoietic malignancies.
Collapse
Affiliation(s)
- Tania Brandstoetter
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eszter Doma
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Thorsten Klampfl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- ICAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Payne A, Taka E, Adinew GM, Soliman KFA. Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells. Brain Sci 2023; 13:632. [PMID: 37190597 PMCID: PMC10137201 DOI: 10.3390/brainsci13040632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic neuroinflammation is associated with many neurodegenerative diseases, such as Alzheimer's. Microglia are the brain's primary immune cells, and when activated, they release various proinflammatory cytokines. Several natural compounds with anti-inflammatory and antioxidant properties, such as epigallocatechin 3-gallate (EGCG), may provide a promising strategy for inflammation-related neurodegenerative diseases involving activated microglia cells. The objective of the current study was to examine the molecular targets underlying the anti-inflammatory effects of EGCG in activated microglia cells. BV-2 microglia cells were grown, stimulated, and treated with EGCG. Cytotoxicity and nitric oxide (NO) production were evaluated. Immunoassay, PCR array, and WES™ Technology were utilized to evaluate inflammatory, neuroprotective modulators as well as signaling pathways involved in the mechanistic action of neuroinflammation. Our findings showed that EGCG significantly inhibited proinflammatory mediator NO production in LPS-stimulated BV-2 microglia cells. In addition, ELISA analysis revealed that EGCG significantly decreases the release of proinflammatory cytokine IL-6 while it increases the release of TNF-α. PCR array analysis showed that EGCG downregulated MIF, CCL-2, and CSF2. It also upregulated IL-3, IL-11, and TNFS10. Furthermore, the analysis of inflammatory signaling pathways showed that EGCG significantly downregulated mRNA expression of mTOR, NF-κB2, STAT1, Akt3, CCL5, and SMAD3 while significantly upregulating the expression of mRNA of Ins2, Pld2, A20/TNFAIP3, and GAB1. Additionally, EGCG reduced the relative protein expression of NF-κB2, mTOR, and Akt3. These findings suggest that EGCG may be used for its anti-inflammatory effects to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health (COPPS, IPH), Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
19
|
Yin L, Ying L, Guo R, Hao M, Liang Y, Bi Y, Chen Y, Yu C, Yang Z. Ligustilide induces apoptosis and reduces proliferation in human bladder cancer cells by NFκB1 and mitochondria pathway. Chem Biol Drug Des 2023; 101:1252-1261. [PMID: 36751909 DOI: 10.1111/cbdd.14207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Ligustilide (LIG), the bioactive constituent of Angelica sinensis, may exert potential benefits in cancer treatment. However, the potential mechanism of LIG in the suppression of bladder cancer (BC) has not been reported yet. This study uncovered the inhibitory effect of LIG on the proliferation and cell cycle arrest of BC cells (T24 and EJ-1) along with unveiling the underlying molecular mechanism. The IC50 values of LIG-treated T24 for 24 and 48 h are 39.91 μg/mL (209.8 μM) and 40.94 μg/mL (215.2 μM) separately. The same conditions, the IC50 values of EJ-1 are 45.73 μg/mL (240.4 μM) and 43.81 μg/mL (230.3 μM), separately. Additionally, LIG induced apoptosis and cycle arrest of T24 and EJ-1 cells in sub-G1 phase. Further studies showed that LIG induced apoptosis of BC cells by upregulating Caspase-8, truncated BID (tBID) and BAX proteins, and downregulating NFκB1 (p50) protein. In conclusion, LIG significantly inhibits the growth of BC cells in vitro and in vivo by inducing apoptosis and is inexpensive, making it a promising candidate for novel anti-BC drugs.
Collapse
Affiliation(s)
- Liqi Yin
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Ying
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Science and Technology, Tarim University, Alar, China
| | - Rui Guo
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mingxuan Hao
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Bi
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuan Chen
- Department of Urology, Dazhou Central Hospital, Dazhou, China
| | - Changyuan Yu
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhao Yang
- Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, College of Life Science and Technology, Tarim University, Alar, China
| |
Collapse
|
20
|
De Becker A, Heestermans R, De Brouwer W, Bockstaele K, Maes K, Van Riet I. Genetic profiling of human bone marrow mesenchymal stromal cells after in vitro expansion in clinical grade human platelet lysate. Front Bioeng Biotechnol 2022; 10:1008271. [DOI: 10.3389/fbioe.2022.1008271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded ex vivo. In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL). We investigated in this study the impact of the culture supplement on gene expression of MSCs. Human bone marrow derived MSCs were expanded in vitro in FCS and PL supplemented medium. We found that MSCs expanded in PL-containing medium (PL-MSCs) express typical MSC immunomorphological features and can migrate, as their counterparts expanded in FCS-containing medium, through a layer of endothelial cells in vitro. Additionally, they show an increased proliferation rate compared to MSCs expanded in FCS medium (FCS-MSCs). RNA sequencing performed for MSCs cultured in both types of expansion medium revealed a large impact of the choice of growth supplement on gene expression: 1974 genes were at least twofold up- or downregulated. We focused on impact of genes involved in apoptosis and senescence. Our data showed that PL-MSCs express more anti-apoptotic genes and FCS-MSCs more pro-apoptotic genes. FCS-MSCs showed upregulation of senescence-related genes after four passages whereas this was rarer in PL-MSCs at the same timepoint. Since PL-MSCs show higher proliferation rates and anti-apoptotic gene expression, they might acquire features that predispose them to malignant transformation. We screened 10 MSC samples expanded in PL-based medium for the presence of tumor-associated genetic variants using a 165 gene panel and detected only 21 different genetic variants. According to our analysis, none of these were established pathogenic mutations. Our data show that differences in culture conditions such as growth supplement have a significant impact on the gene expression profile of MSCs and favor the use of PL over FCS for expansion of MSCs.
Collapse
|
21
|
Liu H, Zeng L, Yang Y, Huang Z, Guo C, Huang L, Niu X, Zhang C, Wang H. Bcl-3 regulates the function of Th17 cells through raptor mediated glycolysis metabolism. Front Immunol 2022; 13:929785. [PMID: 36159779 PMCID: PMC9500237 DOI: 10.3389/fimmu.2022.929785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Bcl-3 is an atypical IκB family member that regulates transcription in the nucleus by binding to the p50/p52 homologous dimer subunit. Although various studies illustrate the important role of Bcl-3 in physiological function, its role in metabolism is still unclear. We found that Bcl-3 has a metabolic regulatory effect on autoimmunity. Bcl-3-depleted mice are unable to develop experimental autoimmune encephalomyelitis. The disease resistance was linked to an increase in lactate levels in Th17 cells, and lactate could alleviate EAE development in WT mice. Bcl-3 deficient mice had more differentiated Th17 cells and an increased extracellular acidification rate in these cells. Concurrently, their ultimate respiration rate and respiratory reserve capacity were significantly lower than wild-type mice. However, adding GNE-140 (LADH inhibitor) to Bcl-3-deficient Th17 cells could reverse the phenomenon, and lactate supplementation could increase the glycolysis metabolism of Th17 cells in WT mice. Mechanically, Bcl-3 could interact with Raptor through ANK and RNC domains. Therefore, Bcl-3 regulates Th17 pathogenicity by promoting Raptor mediated energy metabolism, revealing a novel regulation of adaptive immunity.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang,
| |
Collapse
|