1
|
Chen L, Hu P, Fang W, Wu T, Shi J. Nebulized Immunotherapy of Orthotopic Lung Cancer by Mild Magnetothermal-Based Innate Immunity Activations. Angew Chem Int Ed Engl 2025; 64:e202413127. [PMID: 39343740 DOI: 10.1002/anie.202413127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Advances in adaptive immunity have greatly contributed to the development of cancer immunotherapy. However, its over-low efficacy and insufficient invasion of immune cells in the tumor tissue, and safety problems caused by cytokine storm, have seriously impeded further clinical application for solid tumor immunotherapy. Notably, the immune microenvironment of the lungs is naturally enriched with alveolar macrophages (AMs). Herein, we introduce a novel nebulized magnetothermal immunotherapy strategy to treat orthotopic lung cancer by using magnetothermal nanomaterial (Zn-CoFe2O4@Zn-MnFe2O4-PEG, named ZCMP), which can release iron ions via an acid/thermal-catalytic reaction to maximize the use of lung's immune environment through the cascade activations of AMs and natural killer (NK) cells. Nebulized administration greatly enhance drug bioavailability by localized drug accumulation at the lesion site. Upon mild magnetic hyperthermia, the released iron ions catalyze endogenous H2O2 decomposition to produce reactive oxygen species (ROS), which triggers the M1 polarization of AMs, and the resultant inflammatory cytokine IFN-β, IL-1β and IL-15 releases to activate c-Jun, STAT5 and GZMB related signaling pathways, promoting NK cells proliferation and activation. This innovative strategy optimally utilizes the lung's immune environment and shows excellent immunotherapeutic outcomes against orthotopic lung cancer.
Collapse
Affiliation(s)
- Lizhu Chen
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Ping Hu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| | - Tong Wu
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
| | - Jianlin Shi
- School of Chemical Science and Engineering, Institute of Advanced Study, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200092, Shanghai, P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P.R. China
| |
Collapse
|
2
|
Duléry R, Piccinelli S, Beg MS, Jang JE, Romee R. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy. Am J Hematol 2024; 99:2340-2350. [PMID: 39248561 DOI: 10.1002/ajh.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
An innovative approach is crucially needed to manage relapse after allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematological malignancies. This review explores key aspects of haploidentical HCT with post-transplant cyclophosphamide, highlighting the potential and suitability of this platform for natural killer (NK) cell immunotherapy. NK cells, known for their unique abilities to eliminate cancer cells, can also exhibit memory-like features and enhanced cytotoxicity when activated by cytokines. By discussing promising results from clinical trials, the review delves into the recent major advances: donor-derived NK cells can be expanded ex vivo in large numbers, cytokine activation may enhance NK cell persistence and efficacy in vivo, and post-HCT NK cell infusion can improve outcomes in high-risk and/or relapsed myeloid malignancies without increasing the risk of graft-versus-host disease, severe cytokine release syndrome, or neurotoxicity. Looking ahead, cytokine-activated NK cells can be synergized with immunomodulatory agents and/or genetically engineered to enhance their tumor-targeting specificity, cytotoxicity, and persistence while preventing exhaustion. The ongoing exploration of these strategies holds promising preliminary results and could be rapidly translated into clinical applications for the benefit of the patients.
Collapse
Affiliation(s)
- Rémy Duléry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Piccinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ji Eun Jang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Alekseeva NA, Boyko AA, Shevchenko MA, Grechikhina MV, Streltsova MA, Alekseeva LG, Sapozhnikov AM, Deyev SM, Kovalenko EI. Three-Dimensional Model Analysis Revealed Differential Cytotoxic Effects of the NK-92 Cell Line and Primary NK Cells on Breast and Ovarian Carcinoma Cell Lines Mediated by Variations in Receptor-Ligand Interactions and Soluble Factor Profiles. Biomedicines 2024; 12:2398. [PMID: 39457710 PMCID: PMC11504426 DOI: 10.3390/biomedicines12102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated peripheral NK (pNK) cells and NK-92 cells in spheroid models of BT-474, MCF7 and SKOV-3 carcinomas and uncovers the reasons for the differential effectiveness of NK cells against tumors. Methods: Tumor spheroids of similar size and shape, obtained from agarose molds, were incubated with NK-92 or pNK cells for 24 h. Tumor cell death was detected using flow cytometry or confocal microscopy. Cytokine production, granzyme B levels and NK cell degranulation analyses were performed, along with pNK and target-cell phenotypic characterization. Results: While NK-92 and pNK cells lysed BT-474 spheroids with comparably low efficiency, pNK cells were more capable of eliminating MCF7 and SKOV-3 spheroids than NK-92 cells were. The results of the functional and phenotypic analyses strongly support the participation of the NKG2D-NKG2DL pathway in pNK cell activation induced by the most sensitive cytotoxic attack on SKOV-3 spheroids, whereas the CX3CR1-CX3CL1 axis appears to be involved in the pNK reaction against MCF-7 spheroids. Conclusions: We provide a new approach for the preliminary identification of the most promising NK cell receptors that can alter the effectiveness of cancer therapy depending on the specific tumor type. Using this approach, NK-92 cells or pNK subsets can be selected for further accumulation and/or genetic modification to improve specificity and reactivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (M.V.G.); (M.A.S.); (L.G.A.); (A.M.S.); (S.M.D.)
| |
Collapse
|
4
|
Molon AC, Heguedusch D, Nunes FD, Cecatto RB, Dos Santos Franco AL, de Oliveira Rodini Pegoraro C, Rodrigues MFSD. A 5-ALA mediated photodynamic therapy increases natural killer cytotoxicity against oral squamous cell carcinoma cell lines. JOURNAL OF BIOPHOTONICS 2024:e202400176. [PMID: 39023037 DOI: 10.1002/jbio.202400176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes over 90% of oral cancers, known for its aggressiveness and poor prognosis. Photodynamic therapy (PDT) has emerged as a promising adjuvant therapy and is linked to immunogenic cell death, activating innate and adaptive anti-tumor responses. Natural Killer (NK) cells, key players in malignant cell elimination, have not been extensively studied in PDT. This study evaluates whether PDT increases OSCC cell lines' susceptibility to NK cell cytotoxicity. PDT, using 5-aminolevulinic acid (5-ALA) and LED irradiation, was applied to Ca1 and Luc4 cell lines. Results showed a dose-dependent viability decrease post-PDT. Gene expression analysis revealed upregulation of NK cell-activating ligands (ULBP1-4, MICA/B) and decreased MHC class I expression in Ca1, suggesting increased NK cell susceptibility. Enhanced NK cell cytotoxicity was confirmed in Ca1 but not in Luc4 cells. These findings indicate that PDT may enhance NK cell-mediated cytotoxicity in OSCC, offering potential for improved treatment strategies.
Collapse
Affiliation(s)
- Angela Cristina Molon
- Post Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rebeca Boltes Cecatto
- Post Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, Brazil
| | | | | | | |
Collapse
|
5
|
Tarannum M, Dinh K, Vergara J, Birch G, Abdulhamid YZ, Kaplan IE, Ay O, Maia A, Beaver O, Sheffer M, Shapiro R, Ali AK, Dong H, Ham JD, Bobilev E, James S, Cameron AB, Nguyen QD, Ganapathy S, Chayawatto C, Koreth J, Paweletz CP, Gokhale PC, Barbie DA, Matulonis UA, Soiffer RJ, Ritz J, Porter RL, Chen J, Romee R. CAR memory-like NK cells targeting the membrane proximal domain of mesothelin demonstrate promising activity in ovarian cancer. SCIENCE ADVANCES 2024; 10:eadn0881. [PMID: 38996027 PMCID: PMC11244547 DOI: 10.1126/sciadv.adn0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Line, Tumor
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/genetics
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mesothelin
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Protein Domains
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Khanhlinh Dinh
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Juliana Vergara
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Grace Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yasmin Z. Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Isabel E. Kaplan
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oyku Ay
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andreia Maia
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Owen Beaver
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roman Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alaa Kassim Ali
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eden Bobilev
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sydney James
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amy B. Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chayapatou Chayawatto
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David A. Barbie
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca L. Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
7
|
Zhang Y, Shi Q, Wang P, Huang C, Tang S, Zhou M, Hu Q, Wu L, Liang D. iPSC-derived NK cells with site-specific integration of CAR19 and IL24 at the multi-copy rDNA locus enhanced antitumor activity and proliferation. MedComm (Beijing) 2024; 5:e553. [PMID: 38737469 PMCID: PMC11082533 DOI: 10.1002/mco2.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
The generation of chimeric antigen receptor-modified natural killer (CAR-NK) cells using induced pluripotent stem cells (iPSCs) has emerged as one of the paradigms for manufacturing off-the-shelf universal immunotherapy. However, there are still some challenges in enhancing the potency, safety, and multiple actions of CAR-NK cells. Here, iPSCs were site-specifically integrated at the ribosomal DNA (rDNA) locus with interleukin 24 (IL24) and CD19-specific chimeric antigen receptor (CAR19), and successfully differentiated into iPSC-derived NK (iNK) cells, followed by expansion using magnetic beads in vitro. Compared with the CAR19-iNK cells, IL24 armored CAR19-iNK (CAR19-IL24-iNK) cells showed higher cytotoxic capacity and amplification ability in vitro and inhibited tumor progression more effectively with better survival in a B-cell acute lymphoblastic leukaemia (B-ALL) (Nalm-6 (Luc1))-bearing mouse model. Interestingly, RNA-sequencing analysis showed that IL24 may enhance iNK cell function through nuclear factor kappa B (NFκB) pathway-related genes while exerting a direct effect on tumor cells. This study proved the feasibility and potential of combining IL24 with CAR-iNK cell therapy, suggesting a novel and promising off-the-shelf immunotherapy strategy.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Qingxin Shi
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Chujun Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaChina
- Hunan Key Laboratory of Animal Models for Human DiseasesSchool of Life SciencesCentral South UniversityChangshaChina
| |
Collapse
|
8
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
9
|
Abou Dalle I, Dulery R, Moukalled N, Ricard L, Stocker N, El-Cheikh J, Mohty M, Bazarbachi A. Bi- and Tri-specific antibodies in non-Hodgkin lymphoma: current data and perspectives. Blood Cancer J 2024; 14:23. [PMID: 38272863 PMCID: PMC10810854 DOI: 10.1038/s41408-024-00989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Bispecific antibodies (BsAbs) are a new group of targeted therapies that are revolutionizing the treatment landscape of B-cell non-Hodgkin's lymphoma (B-NHL). In the relapsed/refractory setting, salvage chemotherapy and autologous stem cell transplantation are capable of curing 50% of patients, whereas the other half will have a dismal outcome with a median overall survival of less than 12 months. This unmet need reinforced the importance of innovative therapies like the BsAbs and CAR-T cell therapies. In this review, we delve into BsAbs in B-NHL from the preclinical development to clinical data in both refractory and frontline settings, and then discuss future perspectives.
Collapse
Affiliation(s)
- Iman Abou Dalle
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Remy Dulery
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Nour Moukalled
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laure Ricard
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Nicolas Stocker
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Jean El-Cheikh
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Sorbonne University, Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Ali Bazarbachi
- Hematology-Oncology Division, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
10
|
Fetzko SL, Timothy LD, Parihar R. NK Cell Therapeutics for Hematologic Malignancies: from Potential to Fruition. Curr Hematol Malig Rep 2023; 18:264-272. [PMID: 37751103 DOI: 10.1007/s11899-023-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE OF REVIEW The current review focuses on the preclinical development and clinical advances of natural killer (NK) cell therapeutics for hematologic malignancies and offers perspective on the unmet challenges that will direct future discovery in the field. RECENT FINDINGS Approaches to improve or re-direct NK cell anti-tumor functions against hematologic malignancies have included transgenic expression of chimeric antigen receptors (CARs), administration of NK cell engagers including BiKEs and TriKEs that enhance antibody-dependent cellular cytotoxicity (ADCC) by co-engaging NK cell CD16 and antigens on tumors, incorporation of a non-cleavable CD16 that results in enhanced ADCC, use of induced memory-like NK cells alone or in combination with CARs, and blockade of NK immune checkpoints to enhance NK cytotoxicity. Recently reported and ongoing clinical trials support the feasibility and safety of these approaches. NK cell-based therapeutic strategies hold great promise as cost-effective, off-the-shelf cell therapies for patients with relapsed and refractory hematologic diseases.
Collapse
Affiliation(s)
- Stephanie L Fetzko
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Leander D Timothy
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Robin Parihar
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Wang C, Huang Y, Jia B, Huang Y, Chen J. Heparanase promotes malignant phenotypes of human oral squamous carcinoma cells by regulating the epithelial-mesenchymal transition-related molecules and infiltrated levels of natural killer cells. Arch Oral Biol 2023; 154:105775. [PMID: 37481997 DOI: 10.1016/j.archoralbio.2023.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES The aim of the present study was to explore the functional role of heparanase (HPSE) and investigate the effect of HPSE on epithelial-mesenchymal transition (EMT) and Tumor-infiltrating activated natural killer cells in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS human oral squamous carcinoma (SCC-25) cells were transfected with HPSE-specific small interfering RNA. Cell Counting Kit-8 assay was performed to examine cell proliferation, while flow cytometry was performed to analyze the cell cycle. Scratch assay was conducted to analyze cell migration, followed by Transwell assay to determine cell invasion. Real-Time Polymerase Chain Reaction and Western-blot assays were performed to measure epithelial-mesenchymal transition protein expression. RNA Sequencing analysis and tumor-infiltrating immune cells estimation were performed to elucidate the effect of HPSE on OSCC. RESULTS Knockdown of HPSE expression decreased the proliferation rate of SCC-25 cells resulting in a significant elevation in cell percentage at the Gap phase 0/Gap phase 1 phase by suppressed cell migration and invasion. The E-cadherin messenger RNA and protein expression increased while Snail and Vimentin expression decreased. RNA Sequencing analysis performed between small interfering RNA and negative control groups identified 42 differentially expressed genes, such as syndecan binding protein, RAB11A, member RAS oncogene family, and DDB1 and CUL4 associated factor 15. CONCLUSIONS These results indicated that knockdown of HPSE suppressed SCC-25 cell proliferation, invasion, migration, and epithelial-mesenchymal transition, possibly via syndecan binding protein and RAB11A, member RAS oncogene family. Moreover, HPSE regulates the infiltrated levels of natural killer cells activated, possibly via DDB1 and CUL4 associated factor 15.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Stomatology, Yancheng Third People's Hospital,The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224001 China
| | - Yisheng Huang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Bo Jia
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Yuhua Huang
- Department of Stomatology, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou 510120, China.
| | - Jun Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China.
| |
Collapse
|
12
|
Shao J, Jin Y, Jin C. A new approach to overcoming resistance to immunotherapy: nanotechnology. Front Oncol 2023; 13:1210245. [PMID: 37637050 PMCID: PMC10457008 DOI: 10.3389/fonc.2023.1210245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapy for immune response has ushered in a new era of cancer treatment. In recent years, new immunotherapeutic agents have been introduced into clinical trials and even approved for marketing. However, the widespread use of immunotherapeutic agents faces an unavoidable challenge: immunotherapy does not work at all for some patients, or has good efficacy in the initial phase, but immunotherapy resistance develops within a short period of time, and immunotherapy can also cause serious adverse effects such as autoimmune inflammation and non-specific inflammation. How to enable patients to overcome drug resistance, reduce the toxic side effects of drugs, enhance patient compliance and improve patient survival has become a problem that clinicians have to face. The advent of nanotechnology provides an encouraging platform for immunotherapy. It can not only improve the bioavailability and stability of drugs and reduce toxic side effects, but also reduce resistance to immunotherapy. Here, we discuss these research advances and discuss potential challenges and future directions.
Collapse
Affiliation(s)
- Jiangbo Shao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Ran LF, Xie XP, Xia JZ, Xie FL, Fan YM, Wu F. T-lymphocytes from focused ultrasound ablation subsequently mediate cellular antitumor immunity after adoptive cell transfer immunotherapy. Front Immunol 2023; 14:1155229. [PMID: 37564660 PMCID: PMC10410281 DOI: 10.3389/fimmu.2023.1155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Background Our previous studies found that high-intensity focused ultrasound (HIFU) stimulated tumor-specific T cells in a mouse H22 tumor model, and adoptive transfer of the T cells from HIFU-treated mice could subsequently elicit stronger inhibition on the growth and progression of the implanted tumors. The aim of this study was to investigate the mechanism of T cells from focused ultrasound ablation in HIFU-mediated immunomodulation. Methods Sixty H22 tumor-bearing mice were treated by either HIFU or sham-HIFU, and 30 naïve syngeneic mice served as controls. All mice were euthanized on day 14 after HIFU and splenic T cell suspensions were obtained in each group. Using an adoptive cell transfer model, a total of 1 × 106 T cells from HIFU treated-mice were intravenously injected into each syngeneic H22 tumor-bearing mouse twice on day 3 and 4, followed by the sacrifice for immunological assessments at 14 days after the adoptive transfer. Results T cells from HIFU-treated mice could significantly enhance the cytotoxicity of CTLs (p < 0.001), with a significant increase of TNF-α (p < 0.001) and IFN-γ secretion (p < 0.001). Compared to control and sham-HIFU groups, the number of Fas ligand+ and perforin+ tumor-infiltrating lymphocytes (TILs) and apoptotic H22 tumor cells were significantly higher (p < 0.001) in the HIFU group. There were linear correlations between apoptotic tumor cells and Fas ligand+ TILs (r = 0.9145, p < 0.001) and perforin+ TILs (r = 0.9619, p < 0.001). Conclusion T cells from HIFU-treated mice can subsequently mediate cellular antitumor immunity, which may play an important role in the HIFU-based immunomodulation.
Collapse
Affiliation(s)
- Li-Feng Ran
- Clinical HIFU Center for Tumor Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Xun-Peng Xie
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
- Department of Oncology, Nantong Third People’s Hospital, Nantong University, Nantong, Jiangsu, China
| | - Ji-Zhu Xia
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Fang-Lin Xie
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Yan-Min Fan
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Feng Wu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Sunga GM, Hartgerink J, Sikora AG, Young S. Enhancement of Immunotherapies in Head and Neck Cancers Using Biomaterial-Based Treatment Strategies. Tissue Eng Part C Methods 2023; 29:257-275. [PMID: 37183412 PMCID: PMC10282827 DOI: 10.1089/ten.tec.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a challenging disease to treat because of typically late-stage diagnoses and tumor formation in difficult-to-treat areas, sensitive to aggressive or invasive treatments. To date, HNSCC treatments have been limited to surgery, radiotherapy, and chemotherapy, which may have significant morbidity and often lead to long-lasting side effects. The development of immunotherapies has revolutionized cancer treatment by providing a promising alternative to standard-of-care therapies. However, single-agent immunotherapy has been only modestly effective in the treatment of various cancers, including HNSCC, with most patients receiving no overall benefit or increased survival. In addition, single-agent immunotherapy's limitations, namely immune-related side effects and the necessity of multidose treatments, must be addressed to further improve treatment efficacy. Biocompatible biomaterials, in combination with cancer immunotherapies, offer numerous advantages in the concentration, localization, and controlled release of drugs, cancer antigens, and immune cells. Biomaterial structures are diverse, and their design can generally be customized to enhance immunotherapy response. In preclinical settings, the use of biomaterials has shown great promise in improving the efficacy of single-agent immunotherapy. Herein, we provide an overview of current immunotherapy treatments for HNSCC and their limitations, as well as the potential applications of biomaterials in enhancing cancer immunotherapies. Impact Statement Advances in anticancer immunotherapies for the past 30 years have yielded exciting clinical results and provided alternatives to long-standing standard-of-care treatments, which are associated with significant toxicities and long-term morbidity. However, patients with head and neck squamous cell carcinoma (HNSCC) have not benefited from immunotherapies as much as patients with other cancers. Immunotherapy limitations include systemic side effects, therapeutic resistance, poor delivery kinetics, and limited patient responses. Biomaterial-enhanced immunotherapies, as explored in this review, are a potentially powerful means of achieving localized drug delivery, sustained and controlled drug release, and immunomodulation. They may overcome current treatment limitations and improve patient outcomes and care.
Collapse
Affiliation(s)
- Gemalene M. Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeffrey Hartgerink
- Department of Chemistry, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
15
|
Want MY, Bashir Z, Najar RA. T Cell Based Immunotherapy for Cancer: Approaches and Strategies. Vaccines (Basel) 2023; 11:vaccines11040835. [PMID: 37112747 PMCID: PMC10142387 DOI: 10.3390/vaccines11040835] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
T cells are critical in destroying cancer cells by recognizing antigens presented by MHC molecules on cancer cells or antigen-presenting cells. Identifying and targeting cancer-specific or overexpressed self-antigens is essential for redirecting T cells against tumors, leading to tumor regression. This is achieved through the identification of mutated or overexpressed self-proteins in cancer cells, which guide the recognition of cancer cells by T-cell receptors. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted Immunotherapy. Significant progress has been made in T cell-based immunotherapy over the past decade, using naturally occurring or genetically engineered T cells to target cancer antigens in hematological malignancies and solid tumors. However, limited specificity, longevity, and toxicity have limited success rates. This review provides an overview of T cells as a therapeutic tool for cancer, highlighting the advantages and future strategies for developing effective T cell cancer immunotherapy. The challenges associated with identifying T cells and their corresponding antigens, such as their low frequency, are also discussed. The review further examines the current state of T cell-based immunotherapy and potential future strategies, such as the use of combination therapy and the optimization of T cell properties, to overcome current limitations and improve clinical outcomes.
Collapse
Affiliation(s)
- Muzamil Y Want
- Department of Immunology, Division of Translational Immuno-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zeenat Bashir
- Department of Chemistry and Biochemistry, Canisius College, Buffalo, NY 14208, USA
| | - Rauf A Najar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
17
|
Du Z, Zhu S, Zhang X, Gong Z, Wang S. Non-Conventional Allogeneic Anti-BCMA Chimeric Antigen Receptor-Based Immune Cell Therapies for Multiple Myeloma Treatment. Cancers (Basel) 2023; 15:567. [PMID: 36765526 PMCID: PMC9913487 DOI: 10.3390/cancers15030567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
MM, characterized by the progressive accumulation of clonal plasma cells in bone marrow, remains a severe medical problem globally. Currently, almost all MM patients who have received standard treatments will eventually relapse. Autologous anti-BCMA CAR-T cells are one of the FDA-approved immunotherapy cell-based products for treating adults with relapsed or refractory (r/r) multiple myeloma. However, this type of CAR-T cell product has several limitations, including high costs, long manufacturing times, and possible manufacturing failure, which significantly hinder its wider application for more patients. In this review, we summarized the current development stage of applying other types of immune cells to bring the anti-BCMA CAR-T therapy from autologous to allogeneic. In general, anti-BCMA CAR gene-edited αβ T cells and CAR-Natural Killer (NK) cells are at the forefront, with multiple clinical trials ongoing, while CAR-γδ T cells and CAR-invariant Natural Killer T (iNKT) cells are still in pre-clinical studies. Other immune cells such as macrophages, B cells, and dendritic cells have been mainly developed to target other antigens and have the potential to be used to target BCMA. Nevertheless, additional regulatory requirements might need to be taken into account in developing these non-conventional allogenic anti-BCMA CAR-based cell products.
Collapse
Affiliation(s)
- Zhicheng Du
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
18
|
Qin H, You C, Yan F, Tan K, Xu C, Zhao R, Ekpo MD, Tan S. Overcoming the challenges in translational development of natural killer cell therapeutics: An opinion paper. Front Oncol 2022; 12:1062765. [DOI: 10.3389/fonc.2022.1062765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
|
19
|
Zhan M, Guo Y, Shen M, Shi X. Nanomaterial‐Boosted Tumor Immunotherapy Through Natural Killer Cells. ADVANCED NANOBIOMED RESEARCH 2022; 2. [DOI: 10.1002/anbr.202200096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Natural killer (NK)‐cell immunotherapy as an alternative to T‐cell immunotherapy has been widely used in clinical cell immunotherapy of various tumors. Despite the surprising findings, the widespread applications of NK cells are still limited by the insufficient expansion and short lifespan of adoptive NK cells in vivo, the poor penetration of NK cells in solid tumors, as well as the immunosuppressive tumor microenvironment that may cause the inactivation of NK cells. Fortunately, the emergence of nanomaterials provides many opportunities to address these vexing problems, thus overcoming the barriers faced by NK cells and promoting the tumor inhibitory efficacy of NK cells. Herein, the recent advances in the rational design of nanomaterials for boosting the NK cell‐based immunotherapy, mainly through enhancing NK cell engagement with tumors, boosting NK cell activation or expansion, as well as redirecting NK cells to tumor cells, are reviewed. Lastly, the design and preparation of next‐generation nanomaterials that aim to further boost the NK cell‐based immunotherapy are briefly discussed.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine College of Biological Science and Medical Engineering Donghua University Shanghai 201620 P.R. China
| |
Collapse
|
20
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
21
|
Porrata LF. Natural Killer Cells Are Key Host Immune Effector Cells Affecting Survival in Autologous Peripheral Blood Hematopoietic Stem Cell Transplantation. Cells 2022; 11:3469. [PMID: 36359863 PMCID: PMC9657161 DOI: 10.3390/cells11213469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The infusion of autograft immune effector cells directly impacts the clinical outcomes of patients treated with autologous peripheral blood hematopoietic stem cell transplantation, suggesting the possibility of an autologous graft-versus tumor cells. Furthermore, the early recovery of immune effector cells also affects survival post-autologous peripheral blood hematopoietic stem cell transplantation. Natural killer cells are among the immune effector cells reported to be collected, infused, and recovered early post-autologous peripheral blood hematopoietic stem cell transplantation. In this review, I attempt to give an update on the role of natural killer cells regarding improving survival outcomes on patients treated with autologous peripheral blood hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Luis F Porrata
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
22
|
Valeri A, García-Ortiz A, Castellano E, Córdoba L, Maroto-Martín E, Encinas J, Leivas A, Río P, Martínez-López J. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022; 13:953849. [PMID: 35990652 PMCID: PMC9381932 DOI: 10.3389/fimmu.2022.953849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the impressive results of autologous CAR-T cell therapy in refractory B lymphoproliferative diseases, CAR-NK immunotherapy emerges as a safer, faster, and cost-effective approach with no signs of severe toxicities as described for CAR-T cells. Permanently scrutinized for its efficacy, recent promising data in CAR-NK clinical trials point out the achievement of deep, high-quality responses, thus confirming its potential clinical use. Although CAR-NK cell therapy is not significantly affected by the loss or downregulation of its CAR tumor target, as in the case of CAR-T cell, a plethora of common additional tumor intrinsic or extrinsic mechanisms that could also disable NK cell function have been described. Therefore, considering lessons learned from CAR-T cell therapy, the emergence of CAR-NK cell therapy resistance can also be envisioned. In this review we highlight the processes that could be involved in its development, focusing on cytokine addiction and potential fratricide during manufacturing, poor tumor trafficking, exhaustion within the tumor microenvironment (TME), and NK cell short in vivo persistence on account of the limited expansion, replicative senescence, and rejection by patient’s immune system after lymphodepletion recovery. Finally, we outline new actively explored alternatives to overcome these resistance mechanisms, with a special emphasis on CRISPR/Cas9 mediated genetic engineering approaches, a promising platform to optimize CAR-NK cell function to eradicate refractory cancers.
Collapse
Affiliation(s)
- Antonio Valeri
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Almudena García-Ortiz
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eva Castellano
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Laura Córdoba
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Maroto-Martín
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jessica Encinas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alejandra Leivas
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre-Centro Nacional de Investigaciones Oncológicas (H12O-CNIO) Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Joaquín Martínez-López,
| |
Collapse
|
23
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
24
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
25
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|