1
|
Wan F, Li Y, Zhu J, Yu D, Liu H, Hu B. Exploring the prognostic value and potential therapeutic strategies of MS4A6A in glioblastoma: A comprehensive analysis of single-cell and multi-omics data. J Cell Mol Med 2024; 28:e70177. [PMID: 39470579 PMCID: PMC11520442 DOI: 10.1111/jcmm.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and treatment-resistant malignancy that poses a significant challenge in modern medicine. Despite advances in surgical resection, radiotherapy and chemotherapy, complete eradication of GBM remains elusive due to its diffuse invasion into the brain parenchyma and propensity for recurrence. The tumour microenvironment (TME), particularly macrophages, has emerged as a critical player in GBM progression, invasion and metastasis. In the immune microenvironment of glioma, MS4A6A exhibits unique expression characteristics in macrophages. This study aimed to investigate the potential role of MS4A6A, a gene associated with aging and neurodegenerative diseases, in GBM and its potential as a prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Fangchao Wan
- Department of Neurology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Yanling Li
- Department of Neurology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Jianming Zhu
- Department of Neurology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Dandan Yu
- Department of Electrocardiogram, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Hongjuan Liu
- Department of Neurology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Bohong Hu
- Department of Neurology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| |
Collapse
|
2
|
Bazrgar M, Mirmotalebisohi SA, Ahmadi M, Azimi P, Dargahi L, Zali H, Ahmadiani A. Comprehensive analysis of lncRNA-associated ceRNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme. J Cell Mol Med 2024; 28:e18392. [PMID: 38864705 PMCID: PMC11167707 DOI: 10.1111/jcmm.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Azimi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Hu F, Zhu Y, Tian J, Xu H, Xue Q. Single-Cell Sequencing Combined with Transcriptome Sequencing Constructs a Predictive Model of Key Genes in Multiple Sclerosis and Explores Molecular Mechanisms Related to Cellular Communication. J Inflamm Res 2024; 17:191-210. [PMID: 38226354 PMCID: PMC10788626 DOI: 10.2147/jir.s442684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Background Multiple sclerosis (MS) causes chronic inflammation and demyelination of the central nervous system and comprises a class of neurodegenerative diseases in which interactions between multiple immune cell types mediate the involvement of MS development. However, the early diagnosis and treatment of MS remain challenging. Methods Gene expression profiles of MS patients were obtained from the Gene Expression Omnibus (GEO) database. Single-cell and intercellular communication analyses were performed to identify candidate gene sets. Predictive models were constructed using LASSO regression. Relationships between genes and immune cells were analyzed by single sample gene set enrichment analysis (ssGSEA). The molecular mechanisms of key genes were explored using gene enrichment analysis. An miRNA network was constructed to search for target miRNAs related to key genes, and related transcription factors were searched by transcriptional regulation analysis. We utilized the GeneCard database to detect the correlations between disease-regulated genes and key genes. We verified the mRNA expression of 4 key genes by reverse transcription-quantitative PCR (RT‒qPCR). Results Monocyte marker genes were selected as candidate gene sets. CD3D, IL2RG, MS4A6A, and NCF2 were found to be the key genes by LASSO regression. We constructed a prediction model with AUC values of 0.7569 and 0.719. The key genes were closely related to immune factors and immune cells. We explored the signaling pathways and molecular mechanisms involving the key genes by gene enrichment analysis. We obtained and visualized the miRNAs associated with the key genes using the miRcode database. We also predicted the transcription factors involved. We used validated key genes in MS patients, several of which were confirmed by RT‒qPCR. Conclusion The prediction model constructed with the CD3D, IL2RG, MS4A6A, and NCF2 genes has good diagnostic efficacy and provides new ideas for the diagnosis and treatment of MS.
Collapse
Affiliation(s)
- Fangzhou Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Yunfei Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Jingluan Tian
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Hua Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, 215006, People’s Republic of China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| |
Collapse
|
4
|
Park SJ, Greer PL, Lee N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 2024; 43:304-318. [PMID: 38087050 DOI: 10.1038/s41388-023-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.
Collapse
Affiliation(s)
- Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Namgyu Lee
- Department of Biomedical Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Hu D, Pei G, Zeng R, Yao Y. Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning. Front Immunol 2023; 14:1288699. [PMID: 38130724 PMCID: PMC10733527 DOI: 10.3389/fimmu.2023.1288699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background Lupus nephritis (LN) is a common and severe glomerulonephritis that often occurs as an organ manifestation of systemic lupus erythematosus (SLE). However, the complex pathological mechanisms associated with LN have hindered the progress of targeted therapies. Methods We analyzed glomerular tissues from 133 patients with LN and 51 normal controls using data obtained from the GEO database. Differentially expressed genes (DEGs) were identified and subjected to enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was utilized to identify key gene modules. The least absolute shrinkage and selection operator (LASSO) and random forest were used to identify hub genes. We also analyzed immune cell infiltration using CIBERSORT. Additionally, we investigated the relationships between hub genes and clinicopathological features, as well as examined the distribution and expression of hub genes in the kidney. Results A total of 270 DEGs were identified in LN. Using weighted gene co-expression network analysis (WGCNA), we clustered these DEGs into 14 modules. Among them, the turquoise module displayed a significant correlation with LN (cor=0.88, p<0.0001). Machine learning techniques identified four hub genes, namely CD53 (AUC=0.995), TGFBI (AUC=0.997), MS4A6A (AUC=0.994), and HERC6 (AUC=0.999), which are involved in inflammation response and immune activation. CIBERSORT analysis suggested that these hub genes may contribute to immune cell infiltration. Furthermore, these hub genes exhibited strong correlations with the classification, renal function, and proteinuria of LN. Interestingly, the highest hub gene expression score was observed in macrophages. Conclusion CD53, TGFBI, MS4A6A, and HERC6 have emerged as promising candidate driver genes for LN. These hub genes hold the potential to offer valuable insights into the molecular diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Finotto L, Cole B, Giese W, Baumann E, Claeys A, Vanmechelen M, Decraene B, Derweduwe M, Dubroja Lakic N, Shankar G, Nagathihalli Kantharaju M, Albrecht JP, Geudens I, Stanchi F, Ligon KL, Boeckx B, Lambrechts D, Harrington K, Van Den Bosch L, De Vleeschouwer S, De Smet F, Gerhardt H. Single-cell profiling and zebrafish avatars reveal LGALS1 as immunomodulating target in glioblastoma. EMBO Mol Med 2023; 15:e18144. [PMID: 37791581 PMCID: PMC10630887 DOI: 10.15252/emmm.202318144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.
Collapse
Affiliation(s)
- Lise Finotto
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Basiel Cole
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Maxime Vanmechelen
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Department of Medical OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Brecht Decraene
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Nikolina Dubroja Lakic
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Gautam Shankar
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Madhu Nagathihalli Kantharaju
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Jan Philipp Albrecht
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Humboldt University of BerlinBerlinGermany
| | - Ilse Geudens
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Fabio Stanchi
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Keith L Ligon
- Center for Neuro‐oncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of PathologyBrigham and Women's HospitalBostonMAUSA
- Department of PathologyHarvard Medical SchoolBostonMAUSA
| | - Bram Boeckx
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Diether Lambrechts
- VIB ‐ KU Leuven Center for Cancer BiologyVIB ‐ KU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Translational Genetics, Department of Human GeneticsKU LeuvenLeuvenBelgium
| | - Kyle Harrington
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Chan Zuckerberg InitiativeRedwood CityCAUSA
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- VIB ‐ KU Leuven Center for Brain & Disease Research, Laboratory of NeurobiologyVIB ‐ KU LeuvenLeuvenBelgium
| | - Steven De Vleeschouwer
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven & Leuven Brain Institute (LBI)KU LeuvenLeuvenBelgium
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging & PathologyKU LeuvenLeuvenBelgium
- KU Leuven Institute for Single Cell Omics (LISCO)KU LeuvenLeuvenBelgium
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- DZHK (German Center for Cardiovascular Research), Partner Site BerlinBerlinGermany
- Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
7
|
Gao L, Ye Z, Peng S, Lei P, Song P, Li Z, Zhou L, Hua Q, Cheng L, Wei H, Liu J, Cai Q. BCL2A1 is associated with tumor-associated macrophages and unfavorable prognosis in human gliomas. Aging (Albany NY) 2023; 15:11611-11638. [PMID: 37889551 PMCID: PMC10637801 DOI: 10.18632/aging.205149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family. Previous studies have shown that BCL2A1 is closely related to the tumorigenesis and resistance to chemotherapy of multiple solid tumors, such as breast cancer. However, the expression pattern and potential biological function of BCL2A1 in glioma remain unknown. For the first time, we found that the expression of BCL2A1 was higher in human glioma tissues than in normal brain tissues (NBTs) in both public datasets and an in-house cohort. High BCL2A1 expression was associated with advanced WHO grade, IDH 1/2 wild type and the mesenchymal (ME) subtype, and its overexpression in glioma predicted resistance to temozolomide (TMZ) chemotherapy and unfavorable prognosis. In addition, Gene set enrichment analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that BCL2A1 was significantly correlated with the immune response and immune-related pathways, and BCL2A1 expression was positively correlated with microenvironmental parameters (immune, stromal, and ESTIMATE scores) and macrophage infiltration. Interestingly, bioinformatic prediction and immunohistochemical/immunofluorescence staining analysis revealed that BCL2A1 expression was obviously associated with the tumor-associated macrophages (TAMs) markers CD68 and CCL2. Notably, knockdown of BCL2A1 significantly inhibited cell proliferation of U87 and U251 in vitro, induced smaller tumor size and prolonged survival time of mice in vivo. Co-culture experiments of macrophages and GBM cells showed that BCL2A1 knockdown inhibited macrophage migration. Meanwhile, knockdown of BCL2A1 was associated with low expression of CD68 and CCL2 in intracranial xenograft model. This may suggest that BCL2A1 promotes the progression of glioma and influences the prognosis of patients by participating in TAMs infiltration. In conclusion, these findings suggest that BCL2A1 could serve as a promising prognostic indicator and immunotherapy target in gliomas.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- School of Nursing, Kunming Medical University, Kunming, China
| | - Pan Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuwei Hua
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hangyu Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Li X, Zheng C, Xue X, Wu J, Li F, Song D, Li X. Integrated analysis of single-cell and bulk RNA sequencing identifies a signature based on macrophage marker genes involved in prostate cancer prognosis and treatment responsiveness. Funct Integr Genomics 2023; 23:115. [PMID: 37010617 DOI: 10.1007/s10142-023-01037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
In the tumor microenvironment, tumor-associated macrophages (TAMs) interact with cancer cells and contribute to the progression of solid tumors. Nonetheless, the clinical significance of TAM-related biomarkers in prostate cancer (PCa) is largely unexplored. The present study aimed to construct a macrophage-related signature (MRS) for predicting PCa patient prognosis based on macrophage marker genes. Six cohorts comprising 1056 PCa patients with RNA-Seq and follow-up data were enrolled. Based on macrophage marker genes identified by single-cell RNA-sequencing (scRNA-seq) analysis, univariate analysis, least absolute shrinkage and selection operator (Lasso)-Cox regression, and machine learning procedures were performed to derive a consensus MRS. Receiver operating characteristic curve (ROC), concordance index, and decision curve analyses were used to confirm the predictive capacity of the MRS. The predictive performance of the MRS for recurrence-free survival (RFS) was stable and robust, and the MRS outperformed traditional clinical variables. Furthermore, high-MRS-score patients presented abundant macrophage infiltration and high-expression levels of immune checkpoints (CTLA4, HAVCR2, and CD86). The frequency of mutations was relatively high in the high-MRS-score subgroup. However, the low-MRS-score patients had a better response to immune checkpoint blockade (ICB) and leuprolide-based adjuvant chemotherapy. Notably, abnormal ATF3 expression may be associated with docetaxel and cabazitaxel resistance in PCa cells, T stage, and the Gleason score. In this study, a novel MRS was first developed and validated to accurately predict patient survival outcomes, evaluate immune characteristics, infer therapeutic benefits, and provide an auxiliary tool for personalized therapy.
Collapse
Affiliation(s)
- Xiugai Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Chang Zheng
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxia Xue
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Junying Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Fei Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Dan Song
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|