1
|
Duan B, Feng Q, Li L, Huang J. CircDDX21 alleviates trophoblast dysfunction and Treg differentiation in recurrent spontaneous abortion via miR-520a-5p/ FOXP3/PD-L1 axis. J Assist Reprod Genet 2024:10.1007/s10815-024-03281-9. [PMID: 39400646 DOI: 10.1007/s10815-024-03281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is a common complication during pregnancy, which is a burden to patients both physically and mentally. Circular RNAs (circRNAs) play important roles in RSA. However, the roles of circDDX21 in RSA development remain unknown. METHODS Decidual samples were harvested from healthy pregnant women and RSA patients. In HTR-8/SVneo and Bewo trophoblast cells, proliferation and migration were analyzed by cell counting kit-8 (CCK-8)/5-ethynyl-2'-deoxyuridine (EdU) staining and transwell/wound healing assays, respectively. CD4+ T cells from peripheral blood mononuclear cells of patients were incubated with trophoblast-conditioned medium. Regulatory T cells (Treg) proliferation was detected by carboxyfluorescein succinimidyl ester (CFSE) assay. Treg proportion, Treg/T helper 17 cells (Th17) ratio, and cytokines were measured using flow cytometry. The association among genes was validated using dual-luciferase assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP). RESULTS CircDDX21 and Forkhead box P3 (FOXP3) decreased, while miR-520a-5p increased in the decidual tissues of RSA patients. CircDDX21 overexpression promoted trophoblast proliferation and migration, and facilitated CD4+ T cell differentiation into Treg. CircDDX21 targeted miR-520a-5p to elevate FOXP3. MiR-520a-5p overexpression reversed the promoted trophoblast cell function of circDDX21 overexpression in HTR-8/SVneo cells. FOXP3 overexpression reversed the repressed trophoblast cell function elicited by miR-520a-5p overexpression in HTR-8/SVneo cells. FOXP3 promoted Treg differentiation by transcriptionally upregulating programmed cell death ligand 1 (PD-L1). CONCLUSION CircDDX21 ameliorated trophoblast dysfunction and Treg differentiation in RSA via miR-520a-5p/FOXP3/PD-L1 axis.
Collapse
Affiliation(s)
- Biao Duan
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Reproductive Medicine Center, Chongqing University Three Gorges Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404000, China.
| | - Qing Feng
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Li Li
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiangfang Huang
- Reproductive Medicine Department, The Affiliated Ganzhou Hospital of Nanchang University, No. 16 Meiguan Avenue, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| |
Collapse
|
2
|
Wagner B, Babasyan S, Wilford S, Robbin MG, de Mestre AM. Monoclonal antibodies for equine CD25 improve detection of regulatory T cells in horses. Vet Immunol Immunopathol 2024; 274:110790. [PMID: 38901326 DOI: 10.1016/j.vetimm.2024.110790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
CD25, the interleukin-2 receptor α-chain, is expressed on cell surfaces of different immune cells and is commonly used for phenotyping of regulatory T cells (Tregs). CD25 has essential roles in the maintenance of hemostasis and immune tolerance and Treg cell involvement has been shown in human diseases and murine models for allergy, autoimmunity, cancer, chronic inflammation, and many others. In horses, a cross-reactive anti-human CD25 antibody has previously been used for characterizing Tregs. Here, we developed monoclonal antibodies (mAbs) to equine CD25 and compared their staining pattern with the anti-human CD25 antibody by flow cytometry. The comparison of the two reagents was performed by two separate analyses in independent laboratories. Overall, similar staining patterns for equine peripheral blood lymphocytes were obtained with the anti-human CD25 antibody and equine CD25 mAb 15-1 in both laboratories. Both reagents identified comparable CD4+CD25+ and CD4+CD25+FOXP3+ percentages after stimulation of peripheral blood mononuclear cells (PBMC) with pokeweed mitogen. However, when compared to the anti-human CD25 antibody, the equine CD25 mAb 15-1 resulted in a better staining intensity of the equine CD25+ cells and increased the percentages of Tregs and other CD25+ cells ex vivo and after culturing of PBMC without stimulation. In summary, the equine CD25 mAbs provide new, improved reagents for Tregs and CD25+ cell phenotyping in horses.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sophie Wilford
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Melissa G Robbin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Toadere TM, Ţichindeleanu A, Bondor DA, Topor I, Trella ŞE, Nenu I. Bridging the divide: unveiling mutual immunological pathways of cancer and pregnancy. Inflamm Res 2024; 73:793-807. [PMID: 38492049 DOI: 10.1007/s00011-024-01866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
The juxtaposition of two seemingly disparate physiological phenomena within the human body-namely, cancer and pregnancy-may offer profound insights into the intricate interplay between malignancies and the immune system. Recent investigations have unveiled striking similarities between the pivotal processes underpinning fetal implantation and successful gestation and those governing tumor initiation and progression. Notably, a confluence of features has emerged, underscoring parallels between the microenvironment of tumors and the maternal-fetal interface. These shared attributes encompass establishing vascular networks, cellular mobilization, recruitment of auxiliary tissue components to facilitate continued growth, and, most significantly, the orchestration of immune-suppressive mechanisms.Our particular focus herein centers on the phenomenon of immune suppression and its protective utility in both of these contexts. In the context of pregnancy, immune suppression assumes a paramount role in shielding the semi-allogeneic fetus from the potentially hostile immune responses of the maternal host. In stark contrast, in the milieu of cancer, this very same immunological suppression fosters the transformation of the tumor microenvironment into a sanctuary personalized for the neoplastic cells.Thus, the striking parallels between the immunosuppressive strategies deployed during pregnancy and those co-opted by malignancies offer a tantalizing reservoir of insights. These insights promise to inform novel avenues in the realm of cancer immunotherapy. By harnessing our understanding of the immunological events that detrimentally impact fetal development, a knowledge grounded in the context of conditions such as preeclampsia or miscarriage, we may uncover innovative immunotherapeutic strategies to combat cancer.
Collapse
Affiliation(s)
- Teodora Maria Toadere
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Andra Ţichindeleanu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania.
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Şerban Ellias Trella
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zhong Y, Qin C, Wang Q, Ding M, Qiu C, Xu Y, Chen J. Inhibition of Foxp3 expression in the placenta of mice infected intraperitoneally by toxoplasma gondii tachyzoites: insights into the PPARγ/miR-7b-5p/Sp1 signaling pathway. Parasit Vectors 2024; 17:189. [PMID: 38632598 PMCID: PMC11025192 DOI: 10.1186/s13071-024-06262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yue Zhong
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cheng Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qing Wang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Maoyuan Ding
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chong Qiu
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Yin T, Li X, Li Y, Zang X, Liu L, Du M. Macrophage plasticity and function in cancer and pregnancy. Front Immunol 2024; 14:1333549. [PMID: 38274812 PMCID: PMC10808357 DOI: 10.3389/fimmu.2023.1333549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.
Collapse
Affiliation(s)
- Tingxuan Yin
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinyi Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lu Liu
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
6
|
Saito S. Role of immune cells in the establishment of implantation and maintenance of pregnancy and immunomodulatory therapies for patients with repeated implantation failure and recurrent pregnancy loss. Reprod Med Biol 2024; 23:e12600. [PMID: 39091423 PMCID: PMC11292669 DOI: 10.1002/rmb2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Background Immune cells play an important role in the establishment of pregnancy, and abnormalities in the immune system can cause implantation failure and miscarriage. Methods Previous papers have been summarized and the role of immune cells in reproduction is reviewed. Results The immune environment in the uterus changes drastically from before implantation to after pregnancy to maintain pregnancy. In allogeneic pregnancies, immature dendritic cells (DCs) that induce immune tolerance from outside the uterus flow into the uterus, and mature DCs that remain in the uterus express programmed cell death ligand 2, which suppresses the immune response. Macrophages are classified into M1-macrophages, which induce inflammation, and M2-macrophages, which suppress inflammation; M1-macrophages are required for luteinization, and M2-macrophages induce the differentiation of endometrial epithelial cells to enable implantation. Regulatory T cells, which suppress rejection, are essential for the implantation and maintenance of allogeneic pregnancies. Implantation failure and fetal loss are associated with decreased numbers or qualitative abnormalities of DCs, macrophages, and regulatory T cells. The clinical usefulness of immunomodulatory therapies in patients with repeated implantation failure and recurrent pregnancy loss has been reported. Conclusion The provision of individualized medical care in cases of implantation failure or miscarriage may improve clinical outcomes.
Collapse
|
7
|
Peng L, Zhao W, Yin T, Xu C, Wang G, Du M. The unique expression pattern of human leukocyte antigen in trophoblasts potentially explains the key mechanism of maternal-fetal tolerance and successful pregnancy. J Reprod Immunol 2023; 158:103980. [PMID: 37390630 DOI: 10.1016/j.jri.2023.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The success of pregnancy mainly depends on immune tolerance of the mother for the semi-allogeneic fetus. The placenta carrying paternal antigens develops in the maternal uterus without suffering immune attack, making the underlying mechanism of maternal tolerance an enduring mystery. As we all know, human leukocyte antigen (HLA) plays an important role in antigen processing and presentation, thus inducing specific immune responses. Therefore, it is reasonable to speculate that the absence of classical HLA class-I(HLA-I) and HLA class-II (HLA-II) molecules in trophoblasts may account for the maternal-fetal tolerance. Here, we review the HLA-involved interactions between trophoblast cells and decidual immune cells, which contribute to the immunotolerance in the development of normal pregnancy. We also compare the similarity between the maternal-fetal interface and tumor-immune microenvironment because the important role of HLA molecules in tumor immune invasion can provide some references to studies of maternal-fetal immune tolerance. Besides, the abnormal HLA expression is likely to be associated with unexplained miscarriage, making HLA molecules potential therapeutic targets. The advances reported by these studies may exert profound influences on other research areas, including tumor immunity, organ transplantation and autoimmune disease in the future.
Collapse
Affiliation(s)
- Lijin Peng
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Weijie Zhao
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Tingxuan Yin
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chunfang Xu
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Guangchuan Wang
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meirong Du
- The Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
8
|
A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int J Mol Sci 2023; 24:ijms24043454. [PMID: 36834865 PMCID: PMC9965492 DOI: 10.3390/ijms24043454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The fundamental basis of pregnancy and cancer is to determine the fate of the survival or the death of humanity. However, the development of fetuses and tumors share many similarities and differences, making them two sides of the same coin. This review presents an overview of the similarities and differences between pregnancy and cancer. In addition, we will also discuss the critical roles that Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 may play in the immune system, cell migration, and angiogenesis, all of which are essential for fetal and tumor development. Even though the comprehensive understanding of ERAP2 lags that of ERAP1 due to the lack of an animal model, recent studies have shown that both enzymes are associated with an increased risk of several diseases, including pregnancy disorder pre-eclampsia (PE), recurrent miscarriages, and cancer. The exact mechanisms in both pregnancy and cancer need to be elucidated. Therefore, a deeper understanding of ERAP's role in diseases can make it a potential therapeutic target for pregnancy complications and cancer and offer greater insight into its impact on the immune system.
Collapse
|
9
|
Menzies FM. Immunology of Pregnancy and Systemic Consequences. Curr Top Microbiol Immunol 2023; 441:253-280. [PMID: 37695432 DOI: 10.1007/978-3-031-35139-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Pregnancy is an immunological paradox, with renowned Nobel Prize winning transplantation biologist Sir Peter Brian Medawar being the first to introduce this concept back in 1953. This concept considers how the maternal immune system can tolerate the developing fetus, which is 50% antigenically foreign to the uterus. There have been significant advances in our understanding of the immune system in regulating fertility, pregnancy and in complications of these, and what was once considered a paradox can be seen as a highly evolved system. Indeed, the complexity of the maternal-fetal interface along with our ever-advancing knowledge of immune cells and mediators means that we have a better understanding of these interactions, with gaps still present. This chapter will summarise the key aspects of the role of the immune system at each stage of pregnancy and highlight the recent advances in our knowledge.
Collapse
Affiliation(s)
- Fiona M Menzies
- School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, UK.
| |
Collapse
|