1
|
Geng N, Yu Z, Zeng X, Xu D, Gao H, Yang M, Huang X. Nuclear Tubulin Enhances CXCR4 Transcription and Promotes Chemotaxis Through TCF12 Transcription Factor in human Hematopoietic Stem Cells. Stem Cell Rev Rep 2023; 19:1328-1339. [PMID: 37067645 DOI: 10.1007/s12015-023-10543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Tubulins are cytoskeleton components in all eukaryotic cells and play crucial roles in various cellular activities by polymerizing into dynamic microtubules. A subpopulation of tubulin has been shown to localize in the nucleus, however, the function of nuclear tubulin remains largely unexplored. Here we report that microtubule depolymerization specifically upregulates surface CXCR4 expression in human hematopoietic stem cells (HSCs). Mechanistically, microtubule depolymerization results in accumulation of tubulin subunits in the nucleus, leading to elevated CXCR4 transcription and increased chemotaxis of human HSCs. Treatment with microtubule stabilizer Epothilone B strongly suppresses the phenotypes induced by microtubule depolymerizing agents in human HSCs. Furthermore, chromatin immunoprecipitation assay reveals an increased binding of nuclear tubulin and TCF12 transcription factor at the CXCR4 promoter region. Depletion of TCF12 significantly suppresses microtubule depolymerization mediated upregulation of CXCR4 surface expression. These results demonstrate a previously unknown function of nuclear tubulin in regulating gene transcription through TCF12. New strategy targeting nuclear tubulin-TCF12-CXCR4 axis may be applicable to enhance HSC transplantation.
Collapse
Affiliation(s)
- Nanxi Geng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Yu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingchao Zeng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hai Gao
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
IL-15 Prevents the Development of T-ALL from Aberrant Thymocytes with Impaired DNA Repair Functions and Increased NOTCH1 Activation. Cancers (Basel) 2023; 15:cancers15030671. [PMID: 36765626 PMCID: PMC9913776 DOI: 10.3390/cancers15030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
We previously reported that NOD.Scid mice lacking interleukin-15 (IL-15), or IL-15 receptor alpha-chain, develop T-acute lymphoblastic leukemia (T-ALL). To understand the mechanisms by which IL-15 signaling controls T-ALL development, we studied the thymocyte developmental events in IL-15-deficient Scid mice from NOD and C57BL/6 genetic backgrounds. Both kinds of mice develop T-ALL characterized by circulating TCR-negative cells expressing CD4, CD8 or both. Analyses of thymocytes in NOD.Scid.Il15-/- mice prior to T-ALL development revealed discernible changes within the CD4-CD8- double-negative (DN) thymocyte developmental stages and increased frequencies of CD4+CD8+ double-positive cells with a high proportion of TCR-negative CD4+ and CD8+ cells. The DN cells also showed elevated expressions of CXCR4 and CD117, molecules implicated in the expansion of DN thymocytes. T-ALL cell lines and primary leukemic cells from IL-15-deficient NOD.Scid and C57BL/6.Scid mice displayed increased NOTCH1 activation that was inhibited by NOTCH1 inhibitors and blockers of the PI3K/AKT pathway. Primary leukemic cells from NOD.Scid.Il15-/- mice survived and expanded when cultured with MS5 thymic stromal cells expressing Delta-like ligand 4 and supplemented with IL-7 and FLT3 ligand. These findings suggest that IL-15 signaling in the thymus controls T-ALL development from aberrant thymocytes with an impaired DNA repair capacity and increased NOTCH1 activation.
Collapse
|
3
|
Yoganathan K, Yan A, Rocha J, Trotman-Grant A, Mohtashami M, Wells L, Zúñiga-Pflücker JC, Anderson MK. Regulation of the Signal-Dependent E Protein HEBAlt Through a YYY Motif Is Required for Progression Through T Cell Development. Front Immunol 2022; 13:848577. [PMID: 35990644 PMCID: PMC9385190 DOI: 10.3389/fimmu.2022.848577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The E protein transcription factors E2A and HEB are critical for many developmental processes, including T cell development. We have shown that the Tcf12 locus gives rise to two distinct HEB proteins, with alternative (HEBAlt) and canonical (HEBCan) N-terminal domains, which are co-expressed during early T cell development. While the functional domains of HEBCan have been well studied, the nature of the HEBAlt-specific (Alt) domain has been obscure. Here we provide compelling evidence that the Alt domain provides a site for the molecular integration of cytokine signaling and E protein activity. Our results indicate that phosphorylation of a unique YYY motif in the Alt domain increases HEBAlt activity by 10-fold, and that this increase is dependent on Janus kinase activity. To enable in vivo studies of HEBAlt in the T cell context, we generated ALT-Tg mice, which can be induced to express a HA-tagged HEBAlt coding cassette in the presence of Cre recombinases. Analysis of ALT-Tg mice on the Vav-iCre background revealed a minor change in the ratio of ISP cells to CD8+ SP cells, and a mild shift in the ratio of T cells to B cells in the spleen, but otherwise the thymus, spleen, and bone marrow lymphocyte subsets were comparable at steady state. However, kinetic analysis of T cell development in OP9-DL4 co-cultures revealed a delay in early T cell development and a partial block at the DN to DP transition when HEBAlt levels or activity were increased. We also observed that HEBCan and HEBAlt displayed significant differences in protein stability that were resolved in the thymocyte context. Finally, a proteomic screen identified STAT1 and Xpo1 as potential members of HEBAlt-containing complexes in thymocytes, consistent with JAK-induced activation of HEBAlt accompanied by translocation to the nucleus. Thus, our results show that the Alt domain confers access to multiple layers of post-translational control to HEBAlt that are not available to HEBCan, and thus may serve as a rheostat to tune E protein activity levels as cells move through different thymic signaling environments during T cell development.
Collapse
Affiliation(s)
- Kogulan Yoganathan
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anqi Yan
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juliana Rocha
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ashton Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lisa Wells
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K. Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|