1
|
Szkopek D, Wychowański P, Zaworski K, Seklecka B, Starzyński R, Lipiński P, Pierzynowska K, Pierzynowski SG, Donaldson J, Paczewski Ł, Woliński J. Investigating the Influence of a Tooth Absence on Facial Bone Growth Using a Porcine Model. Int J Mol Sci 2024; 25:12509. [PMID: 39684221 DOI: 10.3390/ijms252312509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
With the current state of knowledge regarding disorders of facial bone development, including anodontia, the development of a suitable animal model for preclinical studies is essential. The agenesis of dental buds occurs in about 25% of the human population. Prospects for treatment include the use of growth factors, stem cells, and bioengineering. This study aimed to investigate the influence of a tooth absence on facial bone growth, develop a technique for the application of growth factors to the developing bone, and analyze the comparative effect of the application of selected active proteins on the growth of the maxilla and mandible. Piglets underwent germectomy, followed by computed tomography and X-ray; morphometric and histological analyses of the bones were performed, blood bone morphogenetic protein 2 and platelet-derived growth factor concentrations were determined, and the transcriptomic profile of the dentate ligament was analyzed using DNA microarrays. It was not possible to identify the most effective growth factor application algorithm for achieving normal jaw development. Normal mandibular bone structure and oral mucosa structure were observed in the germectomy groups with growth factor augmentation. The average height of the mandibular alveolar part in the area of the removed dental buds was significantly lower compared with that of the inoperable side, 3 months after surgery. However, no significant differences were found in the serum concentrations of BMP-2 and PDGF between groups. The animal model of bone development disorders (including anodontia) developed in the current study and the scheme for evaluating the efficacy and safety of the application of replacement therapy for craniofacial malformations are important in the development of the discipline and represent an important contribution to the introduction of treatment methods.
Collapse
Affiliation(s)
- Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Piotr Wychowański
- Oral Surgery and Implantology Unit, Division of Oral Surgery and Implantology, Department of Head and Neck, Institute of Clinical Dentistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita Cattolica del Sacro Coure, 00168 Rome, Italy
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Blanka Seklecka
- Phase Research Team, Adamed Pharma S.A., 05-152 Pieńków, Poland
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Generics and Animal Biotechnology PAS, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Generics and Animal Biotechnology PAS, 05-552 Jastrzębiec, Poland
| | - Kateryna Pierzynowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Department of Biology, Lund University, 221 48 Lund, Sweden
| | - Stefan G Pierzynowski
- Department of Biology, Lund University, 221 48 Lund, Sweden
- Anara AB, 231 32 Trelleborg, Sweden
- Department of Medical Biology, Witold Chodźka Institute of Rural Medicine, 20-090 Lublin, Poland
| | - Janine Donaldson
- Anara AB, 231 32 Trelleborg, Sweden
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Łukasz Paczewski
- E-Medical Center Profivet sp. z o.o. sp. k, 05-190 Nasielsk, Poland
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
2
|
Wen Y, Zheng Y, Hua S, Li T, Bi X, Lu Q, Li M, Sun S. Mechanisms of Bone Morphogenetic Protein 2 in Respiratory Diseases. Curr Allergy Asthma Rep 2024; 25:1. [PMID: 39466470 DOI: 10.1007/s11882-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor-β (TGF-β) superfamily and plays an important role in regulating embryonic development, angiogenesis, osteogenic differentiation, tissue homeostasis, and cancer invasion. Increasing studies suggest BMP2 is involved in several respiratory diseases. This study aimed to review the role and mechanisms of BMP2 in respiratory diseases. RECENT FINDINGS BMP2 signaling pathway includes the canonical and non-canonical signaling pathway. The canonical signaling pathway is the BMP2-SMAD pathway, and the non-canonical signaling pathway includes mitogen-activated protein kinase (MAPK) pathway and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. The BMP2 is related to pulmonary hypertension (PH), lung cancer, pulmonary fibrosis (PF), asthma, and chronic obstructive pulmonary disease (COPD). BMP2 inhibits the proliferation of pulmonary artery smooth muscle cells (PASMCs), promotes the apoptosis of PASMCs to reduce pulmonary vascular remodeling in PH, which is closely related to the canonical and non-canonical pathway. In addition, BMP2 stimulates the proliferation and migration of cells to promote the occurrence, colonization, and metastasis of lung cancer through the canonical and the non-canonical pathway. Meanwhile, BMP2 exert anti-fibrotic function in PF through canonical signaling pathway. Moreover, BMP2 inhibits airway inflammation to maintain airway homeostasis in asthma. However, the signaling pathways involved in asthma are poorly understood. BMP2 inhibits the expression of ciliary protein and promotes squamous metaplasia of airway epithelial cells to accelerate the development of COPD. In conclusion, BMP2 may be a therapeutic target for several respiratory diseases.
Collapse
Affiliation(s)
- Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Tongfen Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Qiongfen Lu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, China.
| |
Collapse
|
3
|
Chen Q, Liu S, Wang Y, Tong M, Sun H, Dong M, Lu Y, Niu W, Wang L. Yam Carbon Dots Promote Bone Defect Repair by Modulating Histone Demethylase 4B. Int J Nanomedicine 2024; 19:10415-10434. [PMID: 39430312 PMCID: PMC11491100 DOI: 10.2147/ijn.s477587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Chronic apical periodontitis is a typical inflammatory disease of the oral cavity, the pathology is characterized by an inflammatory reaction with bone defects in the periapical area. Chinese medicine is our traditional medicine, Carbon Dots (CDs) are a new type of nanomaterials. The purpose of this study was to prepare Yam Carbon Dots (YAM-CDs) to investigate the mechanism of action of YAM-CDs on bone differentiation in vivo and in vitro. Methods We characterized YAM-CDs using transmission electron microscopy (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD) and photoluminescence (PL). CCK-8 assay, Real-time qPCR, and Western Blot were conducted using bone marrow mesenchymal stem cells (BMSCs) to verify that YAM-CDs promote osteoblast differentiation. In addition, we investigated the role of YAM-CDs in promoting bone formation in an inflammatory setting in an in vivo mouse model of cranial defects. Results The results of TEM and PL showed that the YAM-CDs mostly consisted of the components C1s, O1s, and N1s. Additionally the average sizes of YAM-CDs were 2-6 nm. The quantum yield was 4.44%, with good fluorescence stability and biosafety. Real-time qPCR and Western blot analysis showed that YAM-CDs promoted osteoblast differentiation under an inflammatory environment by regulating expression of histone demethylase 4B (KDM4B). In vivo, results showed that YAM-CDs effectively repaired cranial bone defects in a mouse model and reduced the expression of inflammatory factors under the action of lipopolysaccharides (LPS). Conclusion YAM-CDs promoted the proliferation and differentiation of osteoblasts by regulating the expression of KDM4B to repair cranial bone defects in mice under an LPS-induced inflammatory milieu, which will provide a new idea for the treatment of clinical periapical inflammation and other bone defect diseases.
Collapse
Affiliation(s)
- QianYang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - MeiChen Tong
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - HaiBo Sun
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - Yun Lu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| | - LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
| |
Collapse
|
4
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
5
|
Milešević M, Matić Jelić I, Rumenović V, Ivanjko N, Vukičević S, Bordukalo-Nikšić T. The Influence of BMP6 on Serotonin and Glucose Metabolism. Int J Mol Sci 2024; 25:7842. [PMID: 39063084 PMCID: PMC11276723 DOI: 10.3390/ijms25147842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (I.M.J.); (V.R.); (N.I.); (S.V.)
| |
Collapse
|
6
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Ayyasamy R, Fan S, Czernik P, Lecka-Czernik B, Chattopadhyay S, Chakravarti R. 14-3-3ζ suppresses RANKL signaling by destabilizing TRAF6. J Biol Chem 2024; 300:107487. [PMID: 38908751 PMCID: PMC11331427 DOI: 10.1016/j.jbc.2024.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
Macrophages are essential regulators of inflammation and bone loss. Receptor activator of nuclear factor-κβ ligand (RANKL), a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages obtained from wildtype and YwhazKO animals and RAW264.7 cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger tartrate-resistant acid phosphatase-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.
Collapse
Affiliation(s)
- R Ayyasamy
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - S Fan
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - P Czernik
- Department of Orthopedics, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - B Lecka-Czernik
- Department of Orthopedics, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - S Chattopadhyay
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA; Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - R Chakravarti
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
8
|
Mai ZH, Huang JH, Peng ZL, Pan YJ, Sun ZW, Ai H. miR-20a: a key regulator of orthodontic tooth movement via BMP2 signaling pathway modulation. Connect Tissue Res 2024; 65:304-312. [PMID: 38922815 DOI: 10.1080/03008207.2024.2365201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
AIM In this study, we aimed to establish a rat tooth movement model to assess miR-20's ability in enhancing the BMP2 signaling pathway and facilitate alveolar bone remodeling. METHOD 60 male SD rats had nickel titanium spring devices placed between their left upper first molars and incisors, with the right side serving as the control. Forces were applied at varying durations (18h, 24h, 30h, 36h, 42h, 1d, 3d, 5d, 7d, 14d), and their bilateral maxillary molars and surrounding alveolar bones were retrieved for analysis. Fluorescent quantitative PCR was conducted to assess miR-20a, BMP2, Runx2, Bambi and Smad6 gene expression in alveolar bone, and western blot was performed to determine the protein levels of BMP2, Runx2, Bambi, and Smad6 after mechanical loading. RESULT We successfully established an orthodontic tooth movement model in SD rats and revealed upregulated miR-20a expression and significantly increased BMP2 and Runx2 gene expression and protein synthesis in alveolar bone during molar tooth movement. Although Bambi and Smad6 gene expression did not significantly increase, their protein synthesis was found to decrease significantly. CONCLUSION MiR-20a was found to be involved in rat tooth movement model alveolar bone remodeling, wherein it promoted remodeling by reducing Bambi and Smad6 protein synthesis through the BMP2 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Hua Huang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Stomatology, Kiang Wu Hospital, Macao, China
| | - Zhu-Li Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan-Jun Pan
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Wen Sun
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Wang K, Zhao X, Yang S, Qi X, Li A, Yu W. New insights into dairy management and the prevention and treatment of osteoporosis: The shift from single nutrient to dairy matrix effects-A review. Compr Rev Food Sci Food Saf 2024; 23:e13374. [PMID: 38847750 DOI: 10.1111/1541-4337.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Dairy is recognized as a good source of calcium, which is important for preventing osteoporosis. However, the relationship between milk and bone health is more complex than just calcium supplementation. It is unwise to focus solely on observing the effects of a single nutrient. Lactose, proteins, and vitamins in milk, as well as fatty acids, oligosaccharides, and exosomes, all work together with calcium to enhance its bioavailability and utilization efficiency through various mechanisms. We evaluate the roles of dairy nutrients and active ingredients in maintaining bone homeostasis from the perspective of the dairy matrix effects. Special attention is given to threshold effects, synergistic effects, and associations with the gut-bone axis. We also summarize the associations between probiotic/prebiotic milk, low-fat/high-fat milk, lactose-free milk, and fortified milk with a reduced risk of osteoporosis and discuss the potential benefits and controversies of these dairy products. Moreover, we examine the role of dairy products in increasing peak bone mass during adolescence and reducing bone loss in old age. It provides a theoretical reference for the use of dairy products in the accurate prevention and management of osteoporosis and related chronic diseases and offers personalized dietary recommendations for bone health in different populations.
Collapse
Affiliation(s)
- Kaili Wang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Dairy Processing Technology Research Centre, Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Wei Yu
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
11
|
Harutyunyan A, Hakobyan G. Saddle Nose Deformity Reconstruction with a Allograft Bone. Aesthetic Plast Surg 2024:10.1007/s00266-024-04123-w. [PMID: 38806824 DOI: 10.1007/s00266-024-04123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE Providing lasting cosmetic and functional results for patients with saddle nose deformity with allograft. METHODS This report describes experience with using a of freeze-dried allograft bone allograft in 58 patients who underwent dorsal augmentation over 5-year period (2018-2023). Thirty-eight patients had saddle-shaped deformity of the nose, and 16 patients had post-traumatic cases with saddle nose deformities. All patients underwent a clinical examination using computed tomography. Before surgery using a 3D model, the graft was contoured according to the shape of the nasal defect. The grafts were installed using a closed approach and were placed under the periosteum of the bone. Using lateral photographs, anthropometric measurements of the nose were taken before and after surgery to assess aesthetic outcome after surgery. To assess the results of aesthetic rhinoplasty (UQ), the Portuguese version of the Utrecht Questionnaire was used, which contains a visual analogue scale (VAS) on a 5-point Likert scale. RESULTS A total of 56 patients were satisfied with the results of the surgical procedure. No complications or major graft resorption was observed. An analysis comparing preoperative and 1-year follow-up data using 3D scanning showed a significant increase in dorsal height without dorsal expansion. After rhinoplasty, the mean visual analog scale (VAS) aesthetic score improved significant from 2.3 preoperatively, 3 months postoperatively 8.4, and 8.9 1 year postoperatively. CONCLUSION The use of freeze-dried allograft bone is a useful method of dorsal augmentation in rhinoplasty without donor site complications. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Armen Harutyunyan
- Astkhik Medical Center, Department of Oral and Maxillofacial Surgery, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Gagik Hakobyan
- Head of Department of Oral and Maxillofacial Surgery, Yerevan State Medical University, 0028 Kievyan str. 10 ap. 65 c, Yerevan, Armenia.
| |
Collapse
|
12
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Lademann F, Rijntjes E, Köhrle J, Tsourdi E, Hofbauer LC, Rauner M. Hyperthyroidism-driven bone loss depends on BMP receptor Bmpr1a expression in osteoblasts. Commun Biol 2024; 7:548. [PMID: 38719881 PMCID: PMC11078941 DOI: 10.1038/s42003-024-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
14
|
Zhang J, Jiang J, Liu H, Wang S, Ke K, Liu S, Jiang Y, Liu L, Gao X, He B, Su Y. BMP9 induces osteogenic differentiation through up-regulating LGR4 via the mTORC1/Stat3 pathway in mesenchymal stem cells. Genes Dis 2024; 11:101075. [PMID: 38292169 PMCID: PMC10825279 DOI: 10.1016/j.gendis.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 02/01/2024] Open
Abstract
Bone defects and non-union are prevalent in clinical orthopedy, and the outcomes of current treatments are often suboptimal. Bone tissue engineering offers a promising approach to treating these conditions effectively. Bone morphogenetic protein 9 (BMP9) can commit mesenchymal stem cells to osteogenic lineage, and a knowledge of the underlying mechanisms may help advance the field of bone tissue engineering. Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4), a member of G protein-coupled receptors, is essential for modulating bone development. This study is aimed at investigating the impact of LGR4 on BMP9-induced osteogenesis in mesenchymal stem cells as well as the underlying mechanisms. Bone marrow stromal cells from BMP9-knockout mice exhibited diminished LGR4 expression, and exogenous LGR4 clearly restored the impaired osteogenic potency of the bone marrow stromal cells. Furthermore, LGR4 expression was increased by BMP9 in C3H10T1/2 cells. LGR4 augmented the benefits of BMP9-induced osteogenic markers and bone formation, whereas LGR4 inhibition restricted these effects. Meanwhile, the BMP9-induced lipogenic markers were increased by LGR4 inhibition. The protein levels of Raptor and p-Stat3 were elevated by BMP9. Raptor knockdown or p-Stat3 suppression attenuated the osteoblastic markers and LGR4 expression brought on by BMP9. LGR4 significantly reversed the blocking effect of Raptor knockdown or p-Stat3 suppression on the BMP9-induced osteoblastic markers. Raptor interacts with p-Stat3, and p-Stat3 activates the LGR4 promoter activity. In conclusion, LGR4 boosts BMP9 osteoblastic potency in mesenchymal stem cells, and BMP9 may up-regulate LGR4 via the mTORC1/Stat3 signal activation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Jinhai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Kaixin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Siyuan Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Orthopedics Department, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Jiangxi Hospital Affiliated Children’s Hospital of Chongqing Medical University, Jiangxi 330000, China
- National Clinical Research Center for Child Health and Disorders, China
| |
Collapse
|
15
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
16
|
Ihle CL, Straign DM, Canari JA, Torkko KC, Zolman KL, Smith EE, Owens P. Unique macrophage phenotypes activated by BMP signaling in breast cancer bone metastases. JCI Insight 2024; 9:e168517. [PMID: 38193534 PMCID: PMC10906463 DOI: 10.1172/jci.insight.168517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024] Open
Abstract
Metastatic breast cancer (mBC) tissue in bone was systematically profiled to define the composition of the tumor microenvironment. Gene expression identified a high myeloid signature of patients with improved survival outcomes. Bone metastases were profiled by spatial proteomics to examine myeloid populations within the stroma that correlated with macrophage functions. Single-cell spatial analysis uncovered macrophage activation in the stroma of mBC bone lesions. Matched BC patient samples of primary breast tumor and bone metastasis tissues were compared for gene expression in the bone, where bone morphogenetic protein 2 (BMP2) was most significantly upregulated. Immune cell changes from breast to bone demonstrated a loss of lymphoid cells but a consistent population of macrophages. BMP-activated macrophages were increased uniquely in bone. Bone marrow-derived macrophage activation coupled with BMP inhibition increased inflammatory responses. Using experimental mouse models of mBC bone metastasis and trained immunity, we found that BMP inhibition restricts progression of metastases early in the macrophage activation state but not after tumors were established in the bone. This study revealed unique myeloid BMP activation states that are distinctly integrated with bone metastases.
Collapse
Affiliation(s)
- Claire L. Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Kathleen C. Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn L. Zolman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth E. Smith
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Research Service, Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
17
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
19
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
20
|
Imanpour A, Kolahi Azar H, Makarem D, Nematollahi Z, Nahavandi R, Rostami M, Beheshtizadeh N. In silico engineering and simulation of RNA interferences nanoplatforms for osteoporosis treating and bone healing promoting. Sci Rep 2023; 13:18185. [PMID: 37875547 PMCID: PMC10598124 DOI: 10.1038/s41598-023-45183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoporosis is a bone condition characterized by reduced bone mineral density (BMD), poor bone microarchitecture/mineralization, and/or diminished bone strength. This asymptomatic disorder typically goes untreated until it presents as a low-trauma fracture of the hip, spine, proximal humerus, pelvis, and/or wrist, requiring surgery. Utilizing RNA interference (RNAi) may be accomplished in a number of ways, one of which is by the use of very tiny RNA molecules called microRNAs (miRNAs) and small interfering RNAs (siRNAs). Several kinds of antagomirs and siRNAs are now being developed to prevent the detrimental effects of miRNAs. The goal of this study is to find new antagonists for miRNAs and siRNAs that target multiple genes in order to reduce osteoporosis and promote bone repair. Also, choosing the optimum nanocarriers to deliver these RNAis appropriately to the body could lighten up the research road. In this context, we employed gene ontology analysis to search across multiple datasets. Following data analysis, a systems biology approach was used to process it. A molecular dynamics (MD) simulation was used to explore the possibility of incorporating the suggested siRNAs and miRNA antagonists into polymeric bioresponsive nanocarriers for delivery purposes. Among the three nanocarriers tested [polyethylene glycol (PEG), polyethylenimine (PEI), and PEG-PEI copolymer], MD simulations show that the integration of PEG-PEI with has-mIR-146a-5p is the most stable (total energy = -372.84 kJ/mol, Gyration radius = 2.1084 nm), whereas PEI is an appropriate delivery carrier for has-mIR-7155. The findings of the systems biology and MD simulations indicate that the proposed RNAis might be given through bioresponsive nanocarriers to accelerate bone repair and osteoporosis treatment.
Collapse
Affiliation(s)
- Aylar Imanpour
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Politecnica de Madrid, Madrid, Spain
| | - Zeinab Nematollahi
- UCL Department of Nanotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Reza Nahavandi
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563, Iran
| | - Mohammadreza Rostami
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
22
|
Sun W, Qu S, Ji M, Sun Y, Hu B. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages. Heliyon 2023; 9:e19934. [PMID: 37809369 PMCID: PMC10559348 DOI: 10.1016/j.heliyon.2023.e19934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Background Although the exosomes derived from mesenchymal stem cells (MSCs) display a therapeutic effect on inflammatory diseases, its application on OA has great limitations due to lack of specificity and targeting. The current study aimed to elucidate the potential therapeutic role of bone morphogenetic proteins-7(BMP-7) modified synovial mesenchymal stem cells-derived exosomes (SMSCs-exo) on OA and mechanism. Methods For in vitro experiments, LPS-treated macrophages RAW264.7 were treated with SMSCs-exo (exo) or BMP-7 modified SMSCs-exos (BMP-7-exo). The levels of inflammatory factors were assessed by ELISA. Also, the proportion of iNOS and CD206 positive cells were quantified by flow cytometry. Chondrocytes and RAW264.7 were co-culture to evaluate the effects of macrophage polarization on chondrocytes cellular behaviors. This effect on KOA was verified by an experiment in vivo. HE staining and Safranin fast green staining were used to observe the damage of articular cartilage. Immunohistochemistry was used to determine the expression of collagen II and aggrecan in articular cartilage, as well as the expression of iNOS and CD206 in synovial tissues. Results Our in vitro results showed that BMP-7-exo treatment promoted LPS-induced proliferation of macrophages and chondrocytes, and showed a better ability to reduce inflammation by promoting macrophages M2 polarization. After co-culture with LPS treated macrophages, the proliferation rate and migration of chondrocytes were significantly decreased, while the apoptosis was significantly increased. The macrophages treated with BMP-7-exo and exo partially reversed these changes. The chondrocytes in BMP-7-exo group had higher proliferation rate and migration, as well as lower apoptosis compared with the exo group. Also, the in vivo results showed BMP-7-exo treatment improved the pathological changes of KOA and promoted synovial macrophages M2 polarization. Conclusions Our results demonstrated that BMP-7-exo attenuated KOA inflammation and cartilage injury by synovial macrophages M2 polarization, suggesting that BMP-7-exo carry much therapeutic potential for OA.
Collapse
Affiliation(s)
- Weixue Sun
- Joint Surgery and Sports Medicine Department, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Shaozheng Qu
- Spinal Surgery Department, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Mingxia Ji
- Spinal Surgery Department, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yanli Sun
- Orthopedics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Baiqiang Hu
- Joint Surgery Department, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| |
Collapse
|
23
|
Chang JW, Lin YY, Tsai CH, Liu SC, He XY, Wu YS, Huang CC, Tang CH. Nesfatin-1 stimulates BMP5 expression and osteoclastogenesis in rheumatoid arthritis. Biochem Pharmacol 2023; 215:115687. [PMID: 37481139 DOI: 10.1016/j.bcp.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease marked by immune cell activation and chronic inflammation in the synovium accompanied by osteoclast activation and local joint destruction. Increased levels of the adipokine nesfatin-1 in RA synovium are associated with proinflammatory cytokines. Our analysis of datasets from the Gene Expression Omnibus (GEO) database and synovial tissue samples from RA patients revealed that these had higher levels of nesfatin-1 and osteoclast markers compared with normal synovium. These findings were the same in tissue samples from mice with collagen-induced arthritis (CIA) and normal healthy controls. RNA sequencing analysis revealed that nesfatin-1 increased levels of bone morphogenetic protein-5 (BMP5) expression via JAK/STAT signaling in RA synovial fibroblasts. Finally, we found that nesfatin-1 short hairpin RNA reduced BMP5 and osteoclast formation in CIA mice. These findings provide new insights into the pathogenesis of RA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Xiu-Yuan He
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Syuan Wu
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
24
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
25
|
Nakamura K, Koide M, Kobayashi Y, Yamashita T, Matsushita M, Yasuda H, Ishihara Y, Yoshinari N, Udagawa N. Sclerostin deficiency effectively promotes bone morphogenetic protein-2-induced ectopic bone formation. J Periodontal Res 2023. [PMID: 37154419 DOI: 10.1111/jre.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Severe periodontitis causes alveolar bone resorption, resulting in tooth loss. Developments of tissue regeneration therapy that can restore alveolar bone mass are desired for periodontal disease. The application of bone morphogenetic protein-2 (BMP-2) has been attempted for bone fractures and severe alveolar bone loss. BMP-2 reportedly induces sclerostin expression, an inhibitor of Wnt signals, that attenuates bone acquisition. However, the effect of sclerostin-deficiency on BMP-2-induced bone regeneration has not been fully elucidated. We investigated BMP-2-induced ectopic bones in Sost-knockout (KO) mice. METHODS rhBMP-2 were implanted into the thighs of C57BL/6 (WT) and Sost-KO male mice at 8 weeks of age. The BMP-2-induced ectopic bones in these mice were examined on days 14 and 28 after implantation. RESULTS Immunohistochemical and quantitative RT-PCR analyses showed that BMP-2-induced ectopic bones expressed sclerostin in osteocytes on days 14 and 28 after implantation in Sost-Green reporter mice. Micro-computed tomography analysis revealed that BMP-2-induced ectopic bones in Sost-KO mice showed a significant increased relative bone volume and bone mineral density (WT = 468 mg/cm3 , Sost-KO = 602 mg/cm3 ) compared with those in WT mice on day 14 after implantation. BMP-2-induced ectopic bones in Sost-KO mice showed an increased horizontal cross-sectional bone area on day 28 after implantation. Immunohistochemical staining showed that BMP-2-induced ectopic bones in Sost-KO mice had an increased number of osteoblasts with osterix-positive nuclei compared with those in WT mice on days 14 and 28 after implantation. CONCLUSION Sclerostin deficiency increased bone mineral density in BMP-2-induced ectopic bones.
Collapse
Affiliation(s)
- Keigo Nakamura
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Mai Matsushita
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Hisataka Yasuda
- Bioindustry Division, Oriental Yeast Co., Ltd., Tokyo, Japan
| | | | - Nobuo Yoshinari
- Department of Operative Dentistry, Endodontology and Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
26
|
Fang J, Zhang X, Chen X, Wang Z, Zheng S, Cheng Y, Liu S, Hao L. The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol 2023; 238:124125. [PMID: 36948334 DOI: 10.1016/j.ijbiomac.2023.124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a polypeptide hormone with vital biological functions in bone cells. The abnormal expression of IGF-1 has a serious effect on bone growth, particularly bone remodeling. Evidence from animal models and human disease suggested that both IGF-1 deficiency and excess cause changes in bone remodeling equilibrium, resulting in profound alterations in bone mass and development. Here, we first introduced the functions and mechanisms of the members of IGFs in bone. Subsequently, the critical role of IGF-1 in the process of bone remodeling were emphasized from the aspects of bone resorption and bone formation respectively. This review explains the mechanism of IGF-1 in maintaining bone mass and bone homeostasis to a certain extent and provides a theoretical basis for further research.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun 130061, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
27
|
Abel F, Tan ET, Sneag DB, Lebl DR, Chazen JL. Postoperative Lumbar Fusion Bone Morphogenic Protein-Related Epidural Cyst Formation. AJNR Am J Neuroradiol 2023; 44:351-355. [PMID: 36797032 PMCID: PMC10187819 DOI: 10.3174/ajnr.a7799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Bone morphogenetic protein is broadly used in spinal surgery to enhance fusion rates. Several complications have been associated with the use of bone morphogenetic protein, including postoperative radiculitis and pronounced bone resorption/osteolysis. Bone morphogenetic protein-related epidural cyst formation may represent another complication that has not been described aside from limited case reports. In this case series, we retrospectively reviewed imaging and clinical findings of 16 patients with epidural cysts on postoperative MR imaging following lumbar fusion. In 8 patients, mass effect on the thecal sac or lumbar nerve roots was noted. Of these, 6 patients developed new postoperative lumbosacral radiculopathy. During the study period, most patients were managed conservatively, and 1 patient required revision surgery with cyst resection. Concurrent imaging findings included reactive endplate edema and vertebral bone resorption/osteolysis. Epidural cysts had characteristic findings on MR imaging in this case series and may represent an important postoperative complication in patients following bone morphogenetic protein-augmented lumbar fusion.
Collapse
Affiliation(s)
- F Abel
- From the Departments of Radiology and Imaging (F.A., E.T.T., D.B.S., J.L.C.)
- Spine Surgery (F.A., D.R.L.), Hospital for Special Surgery, New York, New York
| | - E T Tan
- From the Departments of Radiology and Imaging (F.A., E.T.T., D.B.S., J.L.C.)
| | - D B Sneag
- From the Departments of Radiology and Imaging (F.A., E.T.T., D.B.S., J.L.C.)
| | - D R Lebl
- Spine Surgery (F.A., D.R.L.), Hospital for Special Surgery, New York, New York
| | - J L Chazen
- From the Departments of Radiology and Imaging (F.A., E.T.T., D.B.S., J.L.C.)
| |
Collapse
|
28
|
Yang D, Tan Y, Xie X, Xiao W, Kang J. Zingerone attenuates Ti particle-induced inflammatory osteolysis by suppressing the NF-κB signaling pathway in osteoclasts. Int Immunopharmacol 2023; 115:109720. [PMID: 37724956 DOI: 10.1016/j.intimp.2023.109720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Aseptic loosening caused by inflammatory osteolysis is one of the most frequent and serious long-term complications after total joint arthroplasty (TJA). Development of a new therapeutic drug is required due to the lack of effective therapy and serious adverse effects. This study aimed to explore the pharmacological properties of zingerone (ZO) in attenuating osteoclast-mediated periprosthetic osteolysis and how ZO modulates osteoclastogenesis. The nontoxic concentration of ZO was clarified by the CCK-8 method. Then, we explored the efficacy of ZO on suppressing osteoclast differentiation, F-actin ring formation, bone resorption, and NF-κB luciferase activity in vitro as well as osteoprotection in vivo. Polymerase chain reaction and western blotting were applied to detect the underlying mechanisms involved in osteoclastogenesis. ZO showed an obvious inhibitory effect on osteoclastogenesis and bone resorption in a dose-dependent manner by mainly suppressing the activation of NF-κB signaling pathways. Furthermore, ZO administration successfully attenuated titanium (Ti) particle-stimulated periprosthetic osteolysis and osteoporosis by regulating osteoclast formation. Our findings demonstrated the pharmacological properties of ZO in inhibiting osteoclast formation and function by downregulation of NF-κB signaling activation. As a result, these findings could be expected to provide a novel reagent for regulating inflammatory osteolysis caused by prosthetic loosening.
Collapse
Affiliation(s)
- Daishui Yang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yejun Tan
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN 55455, US
| | - Xi Xie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
29
|
Advances in bone regeneration with growth factors for spinal fusion: A literature review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2022; 13:100193. [PMID: 36605107 PMCID: PMC9807829 DOI: 10.1016/j.xnsj.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bone tissue is regenerated via the spatiotemporal involvement of various cytokines. Among them, the bone morphogenetic protein (BMP), which plays a vital role in the bone regeneration process, has been applied clinically for the treatment of refractory orthopedic conditions. Although BMP therapy using a collagen carrier has shown efficiency in bone regeneration over the last two decades, a major challenge-considerable side effects associated with the acute release of high doses of BMPs-has also been revealed. To improve BMP efficiency, the development of new carriers and biologics that can be used in conjunction with BMPs is currently underway. In this review, we describe the current status and future prospects of bone regeneration therapy, with a focus on BMPs. Furthermore, we outline the characteristics and molecular signaling pathways involving BMPs, clinical applications of BMPs in orthopedics, clinical results of BMP use in human spinal surgeries, drugs combined with BMPs to provide synergistic effects, and novel BMP carriers.
Collapse
|
30
|
Shen H, Zhuang Y, Zhang C, Zhang C, Yuan Y, Yu H, Si J, Shen G. Osteoclast-Driven Osteogenesis, Bone Remodeling and Biomaterial Resorption: A New Profile of BMP2-CPC-Induced Alveolar Bone Regeneration. Int J Mol Sci 2022; 23:ijms232012204. [PMID: 36293100 PMCID: PMC9602653 DOI: 10.3390/ijms232012204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
This bedside-to-bench study aimed to systematically investigate the value of applying BMP2-loaded calcium phosphate cement (BMP2-CPC) in the restoration of large-scale alveolar bone defects. Compared to deproteinized bovine bone (DBB), BMP2-CPC was shown to be capable of inducing a favorable pattern of bone regeneration and bone remodeling accompanied by active osteoclastogenesis and optimized biomaterial resorption when applied in reconstructive periodontally accelerated osteogenic orthodontics (PAOO) surgery. To verify the regulatory role of osteoclasts in the BMP2-CPC-induced pattern of bone regeneration, in vitro and in vivo studies were designed to elucidate the underlying mechanism. Our results revealed that osteoclasts played a multifaceted role (facilitating osteogenesis, bone remodeling and biomaterial resorption) in the BMP2-CPC-induced bone regeneration. Osteoclasts contributed to the osteogenic differentiation of mesenchymal stem cells (MSCs) by secreting calcium ions, CTHRC1 and PDGF-B. Moreover, the increased osteoclasts promoted the remodeling of new bone and BMP2-CPC resorption, leading to a harmonized replacement of biomaterials with mature bone. In conclusion, the in vitro and in vivo experimental results corresponded with the clinical results and showed the optimized properties of BMP2-CPC in activating osteoclast-driven bone regeneration and remodeling, thus indicating the highly promising prospects of BMP2-CPC as an ideal therapeutic for alveolar bone defects.
Collapse
Affiliation(s)
- Hongzhou Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Zhuang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chenglong Zhang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Changru Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbo Yu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.Y.); (J.S.); Tel.: +86-21-23271207 (J.S.)
| | - Jiawen Si
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.Y.); (J.S.); Tel.: +86-21-23271207 (J.S.)
| | - Guofang Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|