1
|
Li Z, He Y, Zhang Q, Li B, Xiu R, Zhang H. Characterization of microcirculatory endothelial functions in a D-Galactose-induced aging model. Microvasc Res 2025; 157:104757. [PMID: 39490807 DOI: 10.1016/j.mvr.2024.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Microcirculation health is critical to human health, and aging is an important factor affecting microcirculation health. Although D-Galactose has been widely used in aging research models, there is a lack of relevant studies on D-Galactose simulating microcirculatory aging. Here, we explored microcirculatory endothelial function in D-Galactose-induced aging mice. METHODS Intraperitoneal injection of 150 mg/(kg·d) of D-Galactose was given to cause senescence in mice. Aging was evaluated by SA-β-gal (senescence-associated β-galactosidase) staining. The auricular skin and hepatic microcirculation of mice were observed and detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and microcirculation apparatus. The aging of microcirculation was analyzed from oxidative stress, endothelial impairment, inflammation, microvascular morphology and hemodynamics. RESULTS In aging mice, percentage of SA-β-gal positive area, oxidative stress products reactive oxygen species (ROS) and nitric oxide (NO), endothelial impairment marker syndecan-1 (SDC-1), stromal cell derived factor-1 (SDF-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the senescence-associated secretory phenotype (SASP) were all up-regulated. The tortuosity of microvessels increased in aging mice, the linear density did not change significantly, but the total length of narrow microvessels (TLNMV) increased and wide microvessels (TLWMV) decreased, speculate that vasomotor dysfunction may be present. Hemodynamically, both perfusion and velocity of blood flow were reduced in senescent mice, presumably due to endothelial dysfunction. CONCLUSION Microcirculatory endothelial dysfunction is induced by D-Galactose, leading to microcirculatory aging. In vivo, this is manifested by elevated levels of oxidative stress, impaired endothelial glycocalyx (eGC), and a greater production of chemokines and adhesive molecules. These changes cause vasomotor dysfunction and remodeling, ultimately leading to hemodynamic impairment.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhong He
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qiuju Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
3
|
Koshy K, Barnes H, Farrand E, Glaspole I. Steroid therapy in acute exacerbation of fibrotic interstitial lung disease. Respirology 2024; 29:795-802. [PMID: 38825348 DOI: 10.1111/resp.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Evidence for the benefit of steroid therapy in acute exacerbations (AEs) of idiopathic pulmonary fibrosis (IPF) is limited; however, they remain a cornerstone of management in other fibrotic interstitial lung diseases. This retrospective observational study assesses the effect of steroid treatment on in-hospital mortality in patients with acute exacerbation of fibrotic interstitial lung disease (AE-FILD) including IPF and non-IPF ILDs. METHODS AE-FILD cases over a 10-year period were filtered using a code-based algorithm followed by individual case evaluation. Binary logistic regression analysis was used to assess the relationship between corticosteroid treatment (defined as ≥0.5 mg/kg/day of prednisolone-equivalent for ≥3 days within the first 72 h of admission) and in-hospital mortality or need for lung transplantation. Secondary outcomes included readmission, overall survival, requirement for domiciliary oxygen and rehabilitation. RESULTS Across two centres a total of 107 AE-FILD subjects were included, of which 46 patients (43%) received acute steroid treatment. The steroid cohort was of younger age with fewer comorbidities but had higher oxygen requirements. Pre-admission FVC and DLCO, distribution of diagnoses and smoking history were similar. The mean steroid treatment dose was 4.59 mg/kg/day. Steroid use appeared to be associated with increased risk of inpatient mortality or transplantation (OR 4.11; 95% CI 1.00-16.83; p = 0.049). In the steroid group, there appeared to be a reduced risk of all-cause mortality in non-IPF patients (HR 0.21; 95% CI 0.04-0.96; p = 0.04) compared to their IPF counterparts. Median survival was reduced in the steroid group (221 vs. 520.5 days) with increased risk of all-cause mortality (HR 3.25; 95% CI 1.56-6.77; p < 0.01). CONCLUSION In this two-centre retrospective study of 107 patients, AE-FILD demonstrates a high risk of mortality, at a level similar to that seen for AE-IPF, despite steroid treatment. Clinicians should consider other precipitating factors for exacerbations and use steroids judiciously. Further prospective trials are needed to determine the role of corticosteroids in AE-FILD.
Collapse
Affiliation(s)
- Kavya Koshy
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
- Department of Respiratory and Sleep Medicine, Eastern Health, Melbourne, Victoria, Australia
| | - Hayley Barnes
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Erica Farrand
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Ian Glaspole
- Department of Respiratory Medicine, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
李 亚, 佘 万. [Advances in glucocorticoid resistance in otorhinolaryngological diseases]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:661-665. [PMID: 38973050 PMCID: PMC11599965 DOI: 10.13201/j.issn.2096-7993.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Indexed: 07/09/2024]
Abstract
Glucocorticoids(GC) are widely used in the clinical treatment of autoimmune inner ear diseases, sudden sensorineural hearing loss, Meniere's disease, sinusitis and other otolaryngology diseases. However, GC resistance remains a major factor contributing to the poor efficacy of clinical treatments. The mechanism of GC resistance is still unclear. This paper reviews the related mechanisms of GC resistance from the perspectives of GC receptor factors and non-GC receptor factors. Additionally, it summarizes the latest research progress on GC resistance in otolaryngological diseases, with the aim of identifying effective clinical alternative treatment options for reversing GC resistance in the future.
Collapse
Affiliation(s)
- 亚秀 李
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)Department of Otorhinolaryngology, Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - 万东 佘
- 南京医科大学鼓楼临床医学院耳鼻咽喉头颈外科(南京,210008)Department of Otorhinolaryngology, Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
5
|
Shmarina G, Pukhalskaya D, Shmarin V, Semykin S, Avakyan L, Krasovsky S, Goryainova A, Kostyuk S, Zinchenko R, Kashirskaya N. Burkholderia cepacia in cystic fibrosis children and adolescents: overall survival and immune alterations. Front Cell Infect Microbiol 2024; 14:1374318. [PMID: 39011515 PMCID: PMC11246859 DOI: 10.3389/fcimb.2024.1374318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background In current literature there are only scarce data on the host inflammatory response during Burkholderia cepacia complex (Bcc) persistence. The primary objective of the present research was to carry out cross-sectional analyses of biomarkers and evaluate disease progression in cystic fibrosis (CF) patients with chronic Bcc infection and pathogen-free ones. The secondary aim was to assess prospectively overall survival of the study participants during up to 8 years of follow-up. Methods The study included 116 paediatric patients with CF; 47 CF patients were chronically infected with Bcc, and 69 individuals were Bcc free. Plasma and sputum biomarkers (neutrophil elastase, MMP-8, MMP-9, MMP-12, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IL-22, IL-23, IL-17, IFN-γ, TGFβ1, TNF-α) were analysed using commercially available kits. Besides, inhibitory effect of dexamethasone on proliferative response of PHA-stimulated peripheral blood lymphocytes had been assessed. Results Bcc infected patients did not differ from Bcc free ones in demographic and clinical parameters, but demonstrated an increased rate of glucose metabolism disturbances and survival disadvantage during prolong follow-up period. Biomarkers analyses revealed elevated TNF-α and reduced IL-17F levels in sputum samples of Bcc infected patients. These patients also demonstrated improvement of peripheral blood lymphocyte sensitivity to steroid treatment and reduction in plasma pro-inflammatory (IL-17F and IL-18) and anti-inflammatory (TGFβ1 and IL-10) cytokine concentrations. Conclusions Reduction in IL-17F levels may have several important consequences including increase in steroid sensitivity and glycemic control disturbances. Further investigations are needed to clarify the role of IL-17 cytokines in CF complication development. Low plasma TGFβ1 and IL-10 levels in Bcc infected group may be a sign of subverted activity of regulatory T cells. Such immune alterations may be one of the factors contributing to the development of the cepacia syndrome.
Collapse
Affiliation(s)
- Galina Shmarina
- Research Centre for Medical Genetics, Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Vassiliy Shmarin
- Research Centre for Medical Genetics, Moscow, Russia
- First Moscow State Medical University, Moscow, Russia
| | - Sergey Semykin
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | - Lusine Avakyan
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | - Anastasia Goryainova
- Russian Clinical Children's Hospital, a separate structural unit of the Russian National Research Medical University, Moscow, Russia
| | | | | | | |
Collapse
|
6
|
Zou X, Yang M, Ye Z, Li T, Jiang Z, Xia Y, Tan S, Long Y, Wang X. Uncovering lupus nephritis-specific genes and the potential of TNFRSF17-targeted immunotherapy: a high-throughput sequencing study. Front Immunol 2024; 15:1303611. [PMID: 38440734 PMCID: PMC10909935 DOI: 10.3389/fimmu.2024.1303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets. Methods We performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry. Results Our analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the 'regulation of biological quality' GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells. Discussion Our findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN.
Collapse
Affiliation(s)
- Xiaojuan Zou
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Ying Xia
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Shenghai Tan
- Department of Surgical Intensive Care Unit (SICU), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Long
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Khantakova JN, Mutovina A, Ayriyants KA, Bondar NP. Th17 Cells, Glucocorticoid Resistance, and Depression. Cells 2023; 12:2749. [PMID: 38067176 PMCID: PMC10706111 DOI: 10.3390/cells12232749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Anastasia Mutovina
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| | - Kseniya A. Ayriyants
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| |
Collapse
|
8
|
Wang PM, Zhang ZW, Zhang S, Xing Q, Zhao ZY, Lin QH, Shen LH, Xia ZL, Li FF, Zhu B. Characterization of immunomodulatory factors and cells in bronchoalveolar lavage fluid for immune checkpoint inhibitor-related pneumonitis. J Cancer Res Clin Oncol 2023; 149:8019-8026. [PMID: 36944820 PMCID: PMC10374683 DOI: 10.1007/s00432-023-04696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
As immune checkpoint inhibitors (ICIs) are widely used, a series of immune-related adverse events (irAEs) have been reported, including immune checkpoint inhibitor-related pneumonitis (ICI-pneumonitis). The incidence of ICI-pneumonitis is higher in reality than in clinical trials. The diagnosis is challenging, mainly based on clinical and imaging features, and requires the exclusion of other causes. The data on the biological mechanisms of ICI-pneumonitis are scarce, resulting in little knowledge of the best treatment for ICI-pneumonitis. Bronchoalveolar lavage (BAL) may be helpful to identify the biological differences or find predictive biomarkers, and may in turn help to develop phenotype-specific targeted drugs to treat ICI-pneumonitis. Herein, we outline the characterization of immunomodulatory factors and cells in bronchoalveolar lavage fluid for ICI-pneumonitis. Through careful sorting and literature review, we find crosstalk between pathogenic Th17/Th1 cells (i.e., Th17.1) and pro-inflammatory monocytes, and activation of Th17(/Th1)/IL-17A (/IFN-γ) pathways may play a key role in the pathogenesis of ICI-pneumonitis. Disruption of the interaction between pathogenic Th17/Th1 cells and pro-inflammatory monocytes (such as, anti-IL-23) may be a potential treatment for ICI-pneumonitis. We first describe the possible pathophysiological mechanisms of ICI-pneumonitis, hoping to contribute to the optimization of diagnosis and treatment, as well as provide readers with research inspiration.
Collapse
Affiliation(s)
- Peng-Mei Wang
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Zhong-Wei Zhang
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Shan Zhang
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Qian Xing
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Zhi-Yong Zhao
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Qiong-Hua Lin
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Li-Hua Shen
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Zhi-Li Xia
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Fang-Fang Li
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Biao Zhu
- Department of Critical Care, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
9
|
Les I, Martínez M, Pérez-Francisco I, Cabero M, Teijeira L, Arrazubi V, Torrego N, Campillo-Calatayud A, Elejalde I, Kochan G, Escors D. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers (Basel) 2023; 15:1629. [PMID: 36900420 PMCID: PMC10000735 DOI: 10.3390/cancers15051629] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) are antagonists of inhibitory receptors in the immune system, such as the cytotoxic T-lymphocyte-associated antigen-4, the programmed cell death protein-1 and its ligand PD-L1, and they are increasingly used in cancer treatment. By blocking certain suppressive pathways, ICIs promote T-cell activation and antitumor activity but may induce so-called immune-related adverse events (irAEs), which mimic traditional autoimmune disorders. With the approval of more ICIs, irAE prediction has become a key factor in improving patient survival and quality of life. Several biomarkers have been described as potential irAE predictors, some of them are already available for clinical use and others are under development; examples include circulating blood cell counts and ratios, T-cell expansion and diversification, cytokines, autoantibodies and autoantigens, serum and other biological fluid proteins, human leucocyte antigen genotypes, genetic variations and gene profiles, microRNAs, and the gastrointestinal microbiome. Nevertheless, it is difficult to generalize the application of irAE biomarkers based on the current evidence because most studies have been retrospective, time-limited and restricted to a specific type of cancer, irAE or ICI. Long-term prospective cohorts and real-life studies are needed to assess the predictive capacity of different potential irAE biomarkers, regardless of the ICI type, organ involved or cancer site.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Inés Pérez-Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Cabero
- Clinical Trials Platform, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Nuria Torrego
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Ana Campillo-Calatayud
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Negrete-García MC, de Jesús Ramos-Abundis J, Alvarado-Vasquez N, Montes-Martínez E, Montaño M, Ramos C, Sommer B. Exosomal Micro-RNAs as Intercellular Communicators in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11047. [PMID: 36232350 PMCID: PMC9569972 DOI: 10.3390/ijms231911047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Communication between neighboring or distant cells is made through a complex network that includes extracellular vesicles (EVs). Exosomes, which are a subgroup of EVs, are released from most cell types and have been found in biological fluids such as urine, plasma, and airway secretions like bronchoalveolar lavage (BAL), nasal lavage, saliva, and sputum. Mainly, the cargo exosomes are enriched with mRNAs and microRNAs (miRNAs), which can be transferred to a recipient cell consequently modifying and redirecting its biological function. The effects of miRNAs derive from their role as gene expression regulators by repressing or degrading their target mRNAs. Nowadays, various types of research are focused on evaluating the potential of exosomal miRNAs as biomarkers for the prognosis and diagnosis of different pathologies. Nevertheless, there are few reports on their role in the pathophysiology of idiopathic pulmonary fibrosis (IPF), a chronic lung disease characterized by progressive lung scarring with no cure. In this review, we focus on the role and effect of exosomal miRNAs as intercellular communicators in the onset and progression of IPF, as well as discussing their potential utility as therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Javier de Jesús Ramos-Abundis
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
- Higher School of Medicine Instituto Politécnico Nacional, Salvador Díaz Mirón esquina Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Noé Alvarado-Vasquez
- Biochemistry Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Martha Montaño
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Carlos Ramos
- Cell Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases “Ismael Cosío Villegas” Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|