1
|
Shi J, Wang L, Zeng X, Xie C, Meng Z, Campbell A, Wang L, Fan H, Sun H. Precision-engineered PROTACs minimize off-tissue effects in cancer therapy. Front Mol Biosci 2024; 11:1505255. [PMID: 39649701 PMCID: PMC11621628 DOI: 10.3389/fmolb.2024.1505255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) offer a groundbreaking approach to selectively degrade disease-related proteins by utilizing the ubiquitin-proteasome system. While this strategy shows great potential in preclinical and clinical settings, off-tissue effects remain a major challenge, leading to toxicity in healthy tissues. This review explores recent advancements aimed at improving PROTAC specificity, including tumor-specific ligand-directed PROTACs, pro-PROTACs activated in tumor environments, and E3 ligase overexpression strategies. Innovations such as PEGylation and nanotechnology also play a role in optimizing PROTAC efficacy. These developments hold promise for safer, more effective cancer therapies, though challenges remain for clinical translation.
Collapse
Affiliation(s)
- Jianghua Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Luo Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xuanwei Zeng
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chengzhi Xie
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Lulu Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Heli Fan
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Huabing Sun
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Duan R, Milton P, Sittplangkoon C, Liu X, Sui Z, Boyce BF, Yao Z. Chimeric antigen receptor dendritic cells targeted delivery of a single tumoricidal factor for cancer immunotherapy. Cancer Immunol Immunother 2024; 73:203. [PMID: 39105847 PMCID: PMC11303651 DOI: 10.1007/s00262-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.
Collapse
Affiliation(s)
- Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Philip Milton
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- School of Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Chutamath Sittplangkoon
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Orthopedics, Tianjin Hospital, Tianjin, 30021, People's Republic of China
| | - Zhining Sui
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Xie Y, Shan M, Yu J, Du Y, Wu C, Liu S, Li J, Xiao Y, Yan Y, Li N, Qin J, Lan L, Wang Y. LINC00173 silence and estrone supply suppress ER + breast cancer by estrogen receptor α degradation and LITAF activation. Cancer Sci 2024; 115:2318-2332. [PMID: 38705575 PMCID: PMC11247560 DOI: 10.1111/cas.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.
Collapse
Affiliation(s)
- Yu Xie
- School of Medicine, Nankai University, Tianjin, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Yongjun Du
- School of Medicine, Nankai University, Tianjin, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Shujing Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Jiayin Li
- School of Medicine, Nankai University, Tianjin, China
| | - Yupeng Xiao
- School of Medicine, Nankai University, Tianjin, China
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin, China
| | - Lan Lan
- Department of Integrated Traditional & Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Song W, He Y, Feng Y, Wang Y, Li X, Wu Y, Zhang S, Zhong L, Yan F, Sun L. Image-Guided Photothermal and Immune Therapy of Tumors via Melanin-Producing Genetically Engineered Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305764. [PMID: 38368252 DOI: 10.1002/smll.202305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Photothermal therapy (PTT) is a new treatment modality for tumors. However, the efficient delivery of photothermal agents into tumors remains difficult, especially in hypoxic tumor regions. In this study, an approach to deliver melanin, a natural photothermal agent, into tumors using genetically engineered bacteria for image-guided photothermal and immune therapy is developed. An Escherichia coli MG1655 is transformed with a recombinant plasmid harboring a tyrosinase gene to produce melanin nanoparticles. Melanin-producing genetically engineered bacteria (MG1655-M) are systemically administered to 4T1 tumor-bearing mice. The tumor-targeting properties of MG1655-M in the hypoxic environment integrate the properties of hypoxia targeting, photoacoustic imaging, and photothermal therapeutic agents in an "all-in-one" manner. This eliminates the need for post-modification to achieve image-guided hypoxia-targeted cancer photothermal therapy. Tumor growth is significantly suppressed by irradiating the tumor with an 808 nm laser. Furthermore, strong antitumor immunity is triggered by PTT, thereby producing long-term immune memory effects that effectively inhibit tumor metastasis and recurrence. This work proposes a new photothermal and immune therapy guided by an "all-in-one" melanin-producing genetically engineered bacteria, which can offer broad potential applications in cancer treatment.
Collapse
Affiliation(s)
- Weijian Song
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yaling He
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yanan Feng
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoying Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Shanxin Zhang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| | - Lin Zhong
- School of Public Health, Nanchang University, Nanchang, Jiangxi, 330019, P. R. China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310030, P. R. China
- Bengbu Medical University, Bengbu, Anhui, 233030, P. R. China
| |
Collapse
|
5
|
Ke J, Zhang CJ, Wang LZ, Xie FS, Wu HY, Li T, Bian CW, Wu RL. Lipopolysaccharide promotes cancer cell migration and invasion through METTL3/PI3K/AKT signaling in human cholangiocarcinoma. Heliyon 2024; 10:e29683. [PMID: 38681552 PMCID: PMC11053196 DOI: 10.1016/j.heliyon.2024.e29683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose As a major structural component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) has been detected in the blood circulation and tissues in patients with chronic diseases and cancers, which plays a critical role in the tumor formation and progression. However, the biological role of LPS in human intrahepatic cholangiocarcinoma remains unclear. The aims of this study were to investigate the role of LPS in the malignant progression of intrahepatic cholangiocarcinoma. Methods The cell migration and invasion capacities of cholangiocarcinoma cell lines were evaluated by Boyden chamber assays. Expression levels of the key molecules involved in the PI3K/AKT signaling and METTL3 were detected by qPCR and western blot. The molecular mechanism by which LPS promotes the malignant behaviors was investigated by using siRNAs, plasmids and small molecule inhibitors. Results In vitro experiments showed that exogenous LPS treatment promoted cell migration and invasion capacities in both QBC939 and HUCCT1 cell lines, while did not affect cell proliferation and apoptosis. Mechanistically, exogenous LPS treatment had been proved to induce the increased expression of METTL3 and activate the downstream PI3K/AKTsignaling pathway. In addition, suppression of METTL3 expression reduced cell proliferation, migration and invasion capacities in both cell lines. Furthermore, inhibition of METTL3 expression or inhibition of PI3K/AKT signaling decreased LPS-induced cell migration and invasion capacities. Moreover, knockdown of METTL3 or inhibition of METTL3 significantly inhibited LPS-induced activation of the PI3K/AKT signaling. Conclusion In general, these results suggest that the LPS-METTL3-PI3K/AKT signal axis promotes cell migration and invasion in ICC, which contributes to a reduced overall survival in patients with ICC. It may broaden the horizon of cancer therapy with potential therapeutic targets.
Collapse
Affiliation(s)
- Jing Ke
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang-jiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lian-zi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng-shuo Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yu Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cong-Wen Bian
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruo-Lin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Zheng H, Wu X, Guo L, Liu J. MyD88 signaling pathways: role in breast cancer. Front Oncol 2024; 14:1336696. [PMID: 38347830 PMCID: PMC10859757 DOI: 10.3389/fonc.2024.1336696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
MyD88 plays a central role in breast cancer, exerting a multitude of effects that carry substantial implications. Elevated MyD88 expression is closely associated with aggressive tumor characteristics, suggesting its potential as a valuable prognostic marker and therapeutic target. MyD88 exerts influence over several critical aspects of breast cancer, including metastasis, recurrence, drug resistance, and the regulation of cancer stem cell properties. Furthermore, MyD88 modulates the release of inflammatory and chemotactic factors, thereby shaping the tumor's immune microenvironment. Its role in immune response modulation underscores its potential in influencing the dynamic interplay between tumors and the immune system. MyD88 primarily exerts intricate effects on tumor progression through pathways such as Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), Toll-like Receptor/Nuclear Factor Kappa B (TLR/NF-κB), and others. Nevertheless, in-depth research is essential to unveil the precise mechanisms underlying the diverse roles of MyD88 in breast cancer. The translation of these findings into clinical applications holds great promise for advancing precision medicine approaches for breast cancer patients, ultimately enhancing prognosis and enabling the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
7
|
Alqinyah M, Alhamed AS, Alnefaie HO, Algahtani MM, Badr AM, Albogami AM, Mohany M, Alassmrry YA, Alghaith AF, Alhamami HN, Alhazzani K, Alanazi AZ, Alsaidan OA. Targeting Store-Operated Calcium Entry Regulates the Inflammation-Induced Proliferation and Migration of Breast Cancer Cells. Biomedicines 2023; 11:1637. [PMID: 37371732 DOI: 10.3390/biomedicines11061637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Persistent challenges complicating the treatment of breast cancer remain, despite some recent undeniable successes. Sufficient evidence currently exists demonstrating the crucial role of inflammation, characterized by the enhanced activation of Toll-like receptor 4 (TLR4) and the COX-2/PGE2 pathway, in the migration and proliferation of breast cancer cells. Interestingly, the store-operated calcium entry (SOCE) pathway was shown to be essential for the TLR4 activity and COX-2 expression in immune cells such as macrophages and microglia. However, whether SOCE influences inflammatory signaling and the inflammation-induced proliferation and migration of breast cancer cells is still unknown. Thus, the current study intended to delineate the role of SOCE in the TLR4-induced inflammation, migration, and proliferation of breast cancer cells. To this end, MDA-MB-231 breast cancer cells were treated with lipopolysaccharide (LPS) to activate TLR4, BTP2 to inhibit SOCE, and Thapsigargin to induce SOCE. Following these treatments, several experiments were conducted to evaluate the proliferation and migration rates of the MDA-MB-231 cells and the expression of several inflammatory and oncogenic genes, including COX-2, PGE2, IL-6, IL-8, and VEGF. Different techniques were used to achieve the aims of this study, including qRT-PCR, Western blotting, ELISA, MTT, and wound healing assays. This study shows that SOCE inhibition using BTP2 suppressed the LPS-induced migration and proliferation of breast cancer cells. Additionally, treatment with LPS caused approximately six- and three-fold increases in COX-2 mRNA and protein expression, respectively, compared to the controls. The LPS-induced elevations in the COX-2 mRNA and protein levels were suppressed by BTP2 to the control levels. In addition to its effect on COX-2, BTP2 also suppressed the LPS-induced productions of PGE2, IL-6, IL-8, and VEGF. Conversely, SOCE induction using Thapsigargin enhanced the LPS-induced inflammation, migration, and proliferation of breast cancer cells. Collectively, these results provide evidence for the potentially important role of SOCE in inflammation-induced breast cancer progression processes. Thus, we argue that the current study may provide novel targets for designing new therapeutic approaches for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hussain N Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|