1
|
Zhu Y, Sullender ME, Campbell DE, Wang L, Lee S, Kawagishi T, Hou G, Dizdarevic A, Jais PH, Baldridge MT, Ding S. CRISPR/Cas9 screens identify key host factors that enhance rotavirus reverse genetics efficacy and vaccine production. NPJ Vaccines 2024; 9:211. [PMID: 39505878 PMCID: PMC11542071 DOI: 10.1038/s41541-024-01007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Rotaviruses pose a significant threat to young children. To identify novel pro- and anti-rotavirus host factors, we performed genome-wide CRISPR/Cas9 screens using rhesus rotavirus and African green monkey cells. Genetic deletion of either SERPINB1 or TMEM236, the top two antiviral factors, in MA104 cells increased virus titers in a rotavirus strain independent manner. Using this information, we optimized the existing rotavirus reverse genetics systems by combining SERPINB1 knockout MA104 cells with a C3P3-G3 helper plasmid. We improved the recovery efficiency and rescued several low-titer rotavirus reporter and mutant strains that prove difficult to rescue otherwise. Furthermore, we demonstrate that TMEM236 knockout in Vero cells supported higher yields of two live-attenuated rotavirus vaccine strains than the parental cell line and represents a more robust vaccine-producing cell substrate. Collectively, we developed a third-generation optimized rotavirus reverse genetics system and generated gene-edited Vero cells as a new substrate for improving rotavirus vaccine production.
Collapse
Affiliation(s)
- Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meagan E Sullender
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E Campbell
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanghyun Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alen Dizdarevic
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe H Jais
- Eukarÿs SAS, Pépinière Genopole, 4 rue Pierre Fontaine, Genopole Entreprises Campus 3, 4 Rue Pierre Fontaine 91000, Evry-Courcouronnes, France
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Division of Infectious Diseases and Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Li E, Feng N, Zeng Q, Sanchez-Tacuba L, Kawagishi T, Branham G, Hou G, Wang Z, Greenberg HB, Ding S. Rhesus rotavirus NSP1 mediates extra-intestinal infection and is a contributing factor for biliary obstruction. PLoS Pathog 2024; 20:e1012609. [PMID: 39348381 PMCID: PMC11476687 DOI: 10.1371/journal.ppat.1012609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024] Open
Abstract
We previously demonstrated that in Ifnar1-/-Ifngr1-/- or Stat1-/- suckling mice lacking intact type I and type II interferon (IFN) signaling, rhesus rotavirus (RRV) infection causes a lethal disease with clinical manifestations similar to biliary atresia, including acholic stools, oily fur, growth retardation, and excess mortality. Elevated levels of viral RNA are detected in the bile ducts and liver of diseased pups together with severe inflammatory responses in these tissues. However, the viral determinants and the molecular mechanisms driving this process remain incompletely understood. Using an optimized rotavirus (RV) reverse genetics system, we generated a panel of recombinant RVs that encode non-structural protein 1 (NSP1) derived from different RV strains. We found that compared to the parental simian SA11 strain that is less biliary pathogenic, SA11 containing an RRV-derived NSP1 resulted in severe biliary obstructive disease comparable to that associated with RRV infection, reflected by high levels of viral RNA and inflammation in the biliary tract, liver, and pancreas. In contrast, RRV containing an SA11-originated NSP1 showed only mild biliary obstruction comparable to what was observed during SA11 infection. Infection with a monoreassortant RRV virus carrying NSP1 from the bovine RV UK strain also showed substantially reduced viral replication in extra-intestinal organs and did not develop clinical biliary diseases. Mechanistically, RRV NSP1 seemed to promote active viral replication in hepatocytes and this expanded tropism led to enhanced infiltration of CD4 and CD8 T cells, causing immunopathology and damage in the hepatobiliary system. These results highlight an unexpectedly important role of RV NSP1 in viral replication and disease progression in extra-intestinal tissues.
Collapse
Affiliation(s)
- Enkai Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, United States of America
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liliana Sanchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, United States of America
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Grace Branham
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zemin Wang
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, United States of America
| | - Harry B. Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, United States of America
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Kawagishi T, Sánchez-Tacuba L, Feng N, Greenberg HB, Ding S. Reverse Genetics of Murine Rotavirus: A Comparative Analysis of the Wild-Type and Cell-Culture-Adapted Murine Rotavirus VP4 in Replication and Virulence in Neonatal Mice. Viruses 2024; 16:767. [PMID: 38793648 PMCID: PMC11125933 DOI: 10.3390/v16050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Small-animal models and reverse genetics systems are powerful tools for investigating the molecular mechanisms underlying viral replication, virulence, and interaction with the host immune response in vivo. Rotavirus (RV) causes acute gastroenteritis in many young animals and infants worldwide. Murine RV replicates efficiently in the intestines of inoculated suckling pups, causing diarrhea, and spreads efficiently to uninoculated littermates. Because RVs derived from human and other non-mouse animal species do not replicate efficiently in mice, murine RVs are uniquely useful in probing the viral and host determinants of efficient replication and pathogenesis in a species-matched mouse model. Previously, we established an optimized reverse genetics protocol for RV and successfully generated a murine-like RV rD6/2-2g strain that replicates well in both cultured cell lines and in the intestines of inoculated pups. However, rD6/2-2g possesses three out of eleven gene segments derived from simian RV strains, and these three heterologous segments may attenuate viral pathogenicity in vivo. Here, we rescued the first recombinant RV with all 11 gene segments of murine RV origin. Using this virus as a genetic background, we generated a panel of recombinant murine RVs with either N-terminal VP8* or C-terminal VP5* regions chimerized between a cell-culture-adapted murine ETD strain and a non-tissue-culture-adapted murine EW strain and compared the diarrhea rate and fecal RV shedding in pups. The recombinant viruses with VP5* domains derived from the murine EW strain showed slightly more fecal shedding than those with VP5* domains from the ETD strain. The newly characterized full-genome murine RV will be a useful tool for dissecting virus-host interactions and for studying the mechanism of pathogenesis in neonatal mice.
Collapse
Affiliation(s)
- Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Liliana Sánchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Harry B. Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Greigert V, Saraav I, Son J, Zhu Y, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. Gut Microbes 2024; 16:2297897. [PMID: 38189373 PMCID: PMC10793699 DOI: 10.1080/19490976.2023.2297897] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Kawagishi T, Sánchez-Tacuba L, Feng N, Costantini VP, Tan M, Jiang X, Green KY, Vinjé J, Ding S, Greenberg HB. Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses. Proc Natl Acad Sci U S A 2023; 120:e2214421120. [PMID: 36821582 PMCID: PMC9992845 DOI: 10.1073/pnas.2214421120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens.
Collapse
Affiliation(s)
- Takahiro Kawagishi
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Liliana Sánchez-Tacuba
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| | - Ningguo Feng
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| | - Veronica P. Costantini
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA30333
| | - Ming Tan
- Divison of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Xi Jiang
- Divison of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Kim Y. Green
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jan Vinjé
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA30333
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Harry B. Greenberg
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| |
Collapse
|