1
|
He C, Li Q, Xiao H, Sun X, Gao Z, Cai Y, Zhao S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms 2025; 13:78. [PMID: 39858846 PMCID: PMC11767403 DOI: 10.3390/microorganisms13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Quinoa is the only single plant that can meet all the nutritional needs of human, and its potential for feed utilization has been continuously explored, becoming a prosperous industry for poverty alleviation. In order to further tap the feeding value of whole quinoa, develop quinoa as a feed substitute for conventional crops such as corn, and improve its comprehensive utilization rate, this experiment analyzed the silage quality and mycotoxin content of mixed silage of whole-plant quinoa (WPQ) with whole-plant corn (WPC) or stevia powder(SP) in different proportions, and further improved the silage quality of mixed silage by using two lactic acid bacteria preparations (Sila-Max and Sila-Mix). The quality, microbial population, and mycotoxin levels of quinoa and corn silage, as well as that of the mixed silage of quinoa and stevia, were evaluated using single-factor analysis of variance. The impact of various lactic acid bacteria preparations on the quality of whole-quinoa and whole-corn mixed silage was investigated through two-factor analysis of variance. WPQ and WPC were mixed at the ratio of 5:5 (QB5), 6:4 (QB6), 7:3 (QB7), 8:2 (QB8), 9:1 (QB9) and 10:0 (QB10). SP was mixed with WPQ at the supplemental levels of 0.2% (QB10S2), 0.4% (QB10S4), 0.6% (QB10S6), 0.8% (QB10S8) and 1.0% (QB10S10). After 60 days of silage, the silage indexes, the number of harmful microorganisms, and the mycotoxin levels were measured, to explore the appropriate ratio of mixed silage. The membership function analysis showed that the quality of mixed silage of WPQ with SP was better, and the optimal addition amount of SP was 0.6%. The results of Max and Mix on the quality improvement test of WPQ with WPC mixed silage showed that the two lactic acid bacteria formulations increased CP and AA content, and reduced NH3-N/TN; pH was significantly lower than the control group (p < 0.01), and LA was significantly higher than the control group (p < 0.01). The microbial count results showed that the addition of lactic acid bacteria preparation significantly reduced the number of molds and aerobic bacteria, and the effect of Mix was better than that of Max. When the mixing ratio was between QB7 and QB10, mold was not detected in the lactic-acid-bacteria preparation groups. Max and Mix significantly reduced the levels of mycotoxins, both of which were far below the range of feed safety testing, and 16S rRNA sequencing revealed that the silage microbiota varied with different mixing ratios and whether lactic acid bacteria preparations were used. Max and Mix increased the relative abundance of Firmicutes, with Mix having a more significant effect, especially in the QB6 (65.05%) and QB7 (63.61%) groups. The relative abundance of Lactobacillus was significantly higher than that of the control group (p < 0.05). The relative abundance of Enterobacteriaceae and Streptococcus were negatively and positively correlated with the addition level of quinoa, respectively. Comprehensive analysis showed that adding 0.6% SP to the WPQ and using Mix in mixed silage of WPQ and WPC with the proportion of WPQ no less than 70% had the best silage effect, and was more beneficial to animal health.
Collapse
Affiliation(s)
- Chao He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Qian Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Huaidong Xiao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Xuchun Sun
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Zepeng Gao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| |
Collapse
|
2
|
Wang J, Xie Y, Wu T, Chen Y, Jiang M, Li X, Ye Y, Zhou E, Yang Z. Phytic acid alleviates ochratoxin A-induced renal damage in chicks by modulating ferroptosis and the structure of the intestinal microbiota. Poult Sci 2024; 103:104027. [PMID: 39024690 PMCID: PMC11519695 DOI: 10.1016/j.psj.2024.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Phytic acid (PA) is a natural antioxidant with various biological activities, providing protective effects in multiple animals. Ochratoxin A (OTA) is a mold toxin commonly found in feed, which induces multi-organ damage, with kidney being the target organ of its toxicity. This study investigates the protective effects of PA on OTA-induced renal damage and its potential mechanisms in chicks. The results demonstrates that PA treatment restores OTA-induced renal pathological injuries, reverses the diminished activities of antioxidant enzymes, reduces the accumulation of malondialdehyde, and normalizes the expression of pro-inflammatory cytokines, which confirms that PA can alleviate OTA-induced renal damage. Further investigations reveal that OTA-induced renal injury accompanied by an increase in tissue iron content and the transcription levels of ferroptosis-related genes (TFR, ACSL4, and HO-1), and a decrease in the levels of SLC7A11 and GPX4. PA treatment reverses all these effects, indicating that PA mitigates OTA-induced renal ferroptosis. Moreover, PA supplementation improves intestinal morphology and mucosal function, corrects OTA-induced changes in the intestinal microbiota. Besides, PA microbiota transplantation alleviates renal inflammation and oxidative stress caused by OTA. In conclusion, PA plays a protective role against renal damage through the regulation of ferroptosis and the intestinal microbiota, possibly providing novel insights into the control and prevention of OTA-related nephrotoxicity.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yueqing Xie
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ting Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Xuhai Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
3
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
4
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
5
|
Jannah MW, Handayani F, Lukiswanto BS, Arif MAA, Suwarno S, Purnobasuki H, Sugihartuti R, Utama S, Darodjah S, Lestari TD, Lamid M, Jang G, Safitri E. Investigation of a multicomponent mycotoxin detoxifying agent for aflatoxin B1 and ochratoxin A-induced blood profile in broiler chickens. Vet World 2024; 17:1044-1051. [PMID: 38911087 PMCID: PMC11188902 DOI: 10.14202/vetworld.2024.1044-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Mycotoxins such as aflatoxin B1 and ochratoxin A (OTA) are secondary metabolites in molds that grow in raw materials or commercial feed. This interaction has a synergistic effect on mortality, body weight, feed intake, embryo abnormalities, egg production, and lymphoid organ atrophy. This study was conducted to determine the effect of a mycotoxin detoxifier on the blood profile of broilers that were given feed contaminated with mycotoxin, such as the number of heterophils, lymphocytes, monocytes, mean corpuscular hemoglobin (MCH), and MCH concentration (MCHC). Materials and Methods A total of 20 day-old chicks (DOC) of Cobb broilers were given four treatments with five replicates. The number of chickens used in this research was determined using statistical calculations, and the data obtained was homogeneous so that the population was represented. Treatments included negative control with basal feed (C-), positive control with mycotoxins contamination (C+), treatment 1: Mycotoxins contamination and mycotoxin detoxification 1.1 g/kg (T1), and treatment 2: Mycotoxins contamination and mycotoxin detoxification 1.6 g/kg (T2). Mycotoxin contamination comprised 0.1 mg/kg aflatoxin B1 and 0.1 mg/kg OTA. The treatment period for chickens was 28 days, from 8 to 35 days. A battery cage was used in this study. Chickens were kept in a closed, ventilated room and the room temperature (27°C) was monitored during the treatment period. Results Based on the results of statistical data processing, a significant difference (p < 0.05) was observed between chickens fed mycotoxin-contaminated feed (C+) and chickens not fed mycotoxin-contaminated feed (C-) and chickens given 1.6 g/kg mycotoxin detoxification (T2). Mycotoxin detoxification at a dose of 1.6 g/kg had a significant (p < 0.05) effect on the heterophil, lymphocyte, and heterophil lymphocyte ratio, leukocyte, erythrocyte, and hemoglobin levels of the blood broiler in this experiment. On other parameters such as monocytes, MCH, and MCHC, treatment 2 at dose 1.6 g/kg was the best treatment, although there was no significant effect with C- and T1. Conclusion The administration of mycotoxin detoxifiers at a dose of 1.6 g/kg increased the number of heterophils and the ratio of heterophil lymphocytes, leukocytes, erythrocytes, and hemoglobin in broilers fed mycotoxin-contaminated feed.
Collapse
Affiliation(s)
- Mutmainah Wardatul Jannah
- Department of Veterinary Medicine, Student of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fitri Handayani
- Department of Veterinary Medicine, Student of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Bambang Sektiari Lukiswanto
- Veterinary Clinic Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mohammad Anam Al Arif
- Veterinary Animal Husbandry Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suwarno Suwarno
- Veterinary Microbiology Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Rahmi Sugihartuti
- Basic Veterinary Medicine Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suzanita Utama
- Veterinary Reproduction Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Siti Darodjah
- Department of Animal Production, Animal Husbandry Faculty, Universitas Padjadjaran, West Java Indonesia
| | - Tita Damayanti Lestari
- Veterinary Reproduction Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mirni Lamid
- Veterinary Animal Husbandry Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Goo Jang
- Department of Theriogenology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Erma Safitri
- Veterinary Reproduction Division of Veterinary Medicine Faculty, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
6
|
Wang G, Zhang S, Lan H, Zheng X. Ochratoxin A (OTA) causes intestinal aging damage through the NLRP3 signaling pathway mediated by calcium overload and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27864-27882. [PMID: 38526719 DOI: 10.1007/s11356-024-32696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Ochratoxin A (OTA) is a widespread environmental toxin that poses a serious threat to human and animal health. OTA has been shown to cause cellular and tissue damage and is a global public health problem. However, the effects of OTA on gastrointestinal aging have not been reported. The aim of this study was to investigate the effects of OTA on intestinal aging in vitro and in vivo. In vitro experiments showed that OTA induced cellular inflammation through calcium overload and oxidative stress, significantly up-regulated the expression of P16, P21, and P53 proteins, markedly increased senescence-associated β-galactosidase activity (SA-β-gal) positive cells, and obviously decreased the expression of proliferating cell nuclear antigen (PCNA) proteins, which led to intestinal cell senescence. Meanwhile, we found that treatment with β-carotene ameliorated OTA-induced intestinal cell senescence. Consistent with the results of the in vitro experiments, in vivo studies showed that the intestinal aging of mice fed OTA was significantly higher than that of the control group. In conclusion, OTA may induce intestinal aging through calcium overload, oxidative stress and inflammation. This study lays a foundation for further research on the toxicological effects of OTA.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Zhu Q, Qu H, Kang R, Zheng Y, Guo Q, Huang S, Zhao L, Ma Q. The Toxicokinetics, Excretion Patterns, and Milk Transmission of Ochratoxin A in Lactating Sows. Toxins (Basel) 2024; 16:128. [PMID: 38535793 PMCID: PMC10974951 DOI: 10.3390/toxins16030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024] Open
Abstract
Ochratoxin A (OTA), a mycotoxin commonly found in feedstuffs, is known for its detrimental effects on the kidneys and liver, posing significant health risks to animals and humans. This study investigated the toxicokinetics, excretion patterns, and milk transmission of Ochratoxin A (OTA) in lactating sows. The sows were administered a single oral dose of 500 μg/kg BW (body weight), followed by the systematic sampling of plasma, feces, urine, and milk. Plasma samples were collected at 0, 5, 15, and 30 min, and 1, 2, 3, 6, 9, 12, 24, 48, 72, 88, 96, and 120 h post administration. Feces samples were collected at 6 h intervals for the first 12 h, then at 12 h intervals until 120 h, while urine samples were collected at 6 h intervals up to 120 h. Milk samples were collected at 0, 6, 12, 24, 36, 48, 72, 96, and 120 h. The concentration of OTA and its primary metabolite OTα were quantitatively analyzed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The results revealed that the peak plasma concentrations of OTA (920.25 ± 88.46 μg/L) were observed at 9 h following administration. The terminal elimination half-life was recorded at 78.47 ± 7.68 h, with a volume of distribution of 0.16 ± 0.003 L/kg. Moreover, this study documented the excretion of OTA and OTα across a span of 120 h, revealing that feces and urine accounted for 18.70 ± 0.04% and 8.40 ± 0.002% of the total intake amounts, respectively (calculated based on substance amounts). Furthermore, this experiment detected OTA residues in the milk of lactating sows, with the milk-to-plasma (M/P) ratio initially increasing from 0.06 to 0.46 within the first 24 h following OTA ingestion. These findings offer an exhaustive temporal analysis of OTA's toxicokinetics in lactating sows, emphasizing its pervasive distribution and elimination through various bodily excreta.
Collapse
Affiliation(s)
- Qiufeng Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
| | - Honglei Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
| | - Ruifen Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 100193, China
| | - Yunduo Zheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 100193, China
| | - Qiuying Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Q.Z.); (H.Q.); (R.K.); (Y.Z.); (Q.G.); (S.H.); (L.Z.)
- Laboratory of Feedgrain Safety and Healthy Poultry Farming, Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 100193, China
| |
Collapse
|
8
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
9
|
Alkhattabi NA, Khalifa FK, Doghaither HAA, Al-Ghafari AB, Tarbiah NI, Sabban A. Protective effects of N-acetylcysteine and S-adenosyl-Lmethionine against nephrotoxicity and immunotoxicity induced by ochratoxin A in rats. Int J Health Sci (Qassim) 2024; 18:17-24. [PMID: 38455596 PMCID: PMC10915916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Objective The present study was designed to investigate the nephroprotective and immunoprotective effects of S-adenosyl-L-methionine (SAMe) in comparison to N-acetylcysteine (NAC) against ochratoxin A (OTA) - intoxication. Methods Forty-eight adult male Sprague-Dawley rats were categorized into four groups: Control; OTA intoxication (5 mg OTA/kg diet); OTA + NAC, rats received 200 mg NAC/day before feeding balanced diet contaminated with OTA; and (OTA + SAMe). Rats received 200 mg SAMe/day dissolved in distilled water orally just before feeding a balanced diet contaminated with OTA. Results OTA administration altered serum kidney function biomarkers. These effects were pronouncedly alleviated by treatment with NAC. Results revealed a correlation between OTA-induced immunotoxicity and the reduced white blood cell (WBC) count. Treatments with SAMe significantly improved the WBCs count and hemoglobin concentration. Conclusion NAC and SAMe have a protective role against nephrotoxicity and immunotoxicity induced by continuous administration of OTA. NAC was more effective in reducing OTA nephrotoxicity, whereas SAMe was more potent than NAC in reducing OTA immunotoxicity.
Collapse
Affiliation(s)
- Nuha A. Alkhattabi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fares K. Khalifa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Huda A. Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B. Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nesrin Ibrahim Tarbiah
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa Sabban
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| |
Collapse
|
10
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
11
|
Boutefaha Z, Diab KA, Gheraibia S, El-Nekeety AA, Belattar N, Hassan ME, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Screening of the phytochemical constituents of Teucrium polium extract and evaluation of their prophylactic role against the oxidative damage and cytotoxicity of Aflatoxin B 1 in rats. Toxicon 2023; 233:107252. [PMID: 37597789 DOI: 10.1016/j.toxicon.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Aflatoxin B1 (AFB1) is common carcinogen causing acute and chronic hepatocyte injuries. This study aimed to determine the bioactive components of Teucrium polium methanolic extract (TPE) and to evaluate their protective role against AFB1-induced oxidative damage, cytotoxicity, and genotoxicity in rats. Six groups of male albino rats were treated orally for 4 weeks including the control group, the ِAFB1-treated group (80 μg/kg b.w.), the groups treated with low (LD) or high (HD) dose TPE (50 or 100 mg/kg b.w.), and the groups treated with AFB1 plus TEP (LD) or TPE (HD). Blood and serum samples were collected for different assays. The GC-MS identified 34 compounds, the major compounds were pinene, germacrene D, α-cadinol, α-thujene, epi-bicyclosesquiphellandrene, and limonene. Animals that received AFB1 showed significant changes in all indicators of oxidative stress, biochemistry, cytokines, MNPCEs, comet tail formation in bone marrow, mRNA expression of inflammatory-related genes, Nrf2, and iNOS beside histological changes in the liver. TPE at the two doses tested showed insignificant changes in all tested parameters. The extract could normalize most of these parameters and the hepatic structure in AFB1-treated animals in a dose-dependent fashion. therefore, we concluded that TPE supplementation is effective for protection against AFB1 in endemic areas.
Collapse
Affiliation(s)
- Zineddine Boutefaha
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
12
|
Awuchi CG, Nwozo OS, Aja PM, Odongo GA. High-pressure acidified steaming with varied citric acid dosing can successfully detoxify mycotoxins. Food Sci Nutr 2023; 11:2677-2685. [PMID: 37324899 PMCID: PMC10261742 DOI: 10.1002/fsn3.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Mycotoxins are toxic fungal metabolites that exert various toxicities, including leading to death in lethal doses. This study developed a novel high-pressure acidified steaming (HPAS) for detoxification of mycotoxins in foods and feed. The raw materials, maize and peanut/groundnut, were used for the study. The samples were separated into raw and processed categories. Processed samples were treated using HPAS at different citric acid concentrations (CCC) adjusted to pH 4.0, 4.5, and 5.0. The enzyme-linked immunosorbent assay (ELISA) kit method for mycotoxins analysis was used to determine the levels of mycotoxins in the grains, with specific focus on total aflatoxins (AT), aflatoxins B1 (AFB1), aflatoxin G1 (AFG1), ochratoxin A (OTA), and citrinin. The mean values of the AT, AFB1, AFG1, OTA, and citrinin in the raw samples were 10.06 ± 0.02, 8.21 ± 0.01, 6.79 ± 0.00, 8.11 ± 0.02, and 7.39 ± 0.01 μg/kg for maize, respectively (p ≤ .05); and for groundnut (peanut), they were 8.11 ± 0.01, 4.88 ± 0.01, 7.04 ± 0.02, 6.75 ± 0.01, and 4.71 ± 0.00 μg/kg, respectively. At CCC adjusted to pH 5.0, the AT, AFB1, AFG1, OTA, and citrinin in the samples significantly reduced by 30%-51% and 17%-38% for maize and groundnut, respectively, and were reduced to 28%-100% when CCC was adjusted to pH 4.5 and 4.0 (p ≤ .05). The HPAS process either completely detoxified the mycotoxins or at least reduced them to levels below the maximum limits of 4.00-6.00, 2.00, 2.00, 5.00, and 100 μg/kg for AT, AFB1, AFG1, OTA, and citrinin, respectively, set by the European Union, WHO/FAO, and USDA. The study clearly demonstrates that mycotoxins can be completely detoxified using HPAS at CCC adjusted to pH 4.0 or below. This can be widely applied or integrated into many agricultural and production processes in the food, pharmaceutical, medical, chemical, and nutraceutical industries where pressurized steaming can be applied for the successful detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | - Onyenibe Sarah Nwozo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryUniversity of IbadanIbadanNigeria
| | - Patrick Maduabuchi Aja
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Grace Akinyi Odongo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- International Agency for Research on CancerWorld Health OrganizationLyonFrance
| |
Collapse
|
13
|
Kyei NNA, Waid JL, Ali N, Cramer B, Humpf HU, Gabrysch S. Maternal exposure to multiple mycotoxins and adverse pregnancy outcomes: a prospective cohort study in rural Bangladesh. Arch Toxicol 2023; 97:1795-1812. [PMID: 37067549 PMCID: PMC10182942 DOI: 10.1007/s00204-023-03491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
There is limited and inconsistent evidence, primarily from cross-sectional studies, linking mycotoxins to adverse birth outcomes. This study investigates the potential role of maternal dietary exposure to multiple mycotoxins in the development of several adverse pregnancy and birth outcomes. We analyzed data from 436 singleton pregnancies enrolled in a prospective cohort study in the rural Habiganj district, Bangladesh, between July 2018 and November 2019. Thirty-five urinary mycotoxin biomarkers were quantified using liquid chromatography coupled with tandem mass spectrometry and used to estimate dietary mycotoxin exposure. Multivariable regression models, adjusted for potential confounding and clustering, were fitted to assess the associations between maternal exposure to frequently occurring mycotoxins (ochratoxin A-OTA, citrinin- CIT, and Deoxynivalenol- DON) and pregnancy loss, preterm birth (PTB), low birth weight (LBW), born small-for-gestational-age (SGA) and small-vulnerable newborn. The results indicate that only in 16 of 436 pregnancies (4%) were urine samples free from all investigated mycotoxins. Biomarkers for six major mycotoxins were detected in the urine samples. OTA (95%), CIT (61%), and DON (6%) were most frequently detected, with at least two mycotoxins co-occurring in the majority of women (63%). There was evidence that maternal dietary intake of OTA was associated with higher odds of having an LBW baby, with the odds increasing in a dose-dependent manner. We found no evidence of associations between pregnancy loss, PTB, SGA, small-vulnerable newborns, and maternal dietary exposure to OTA, CIT, and DON, albeit with large confidence intervals, so findings are consistent with protective as well as large harmful effects. Exposure to multiple mycotoxins during pregnancy is widespread in this rural community and represents a health risk for mothers and babies. Tailored public health policies and interventions must be implemented to reduce mycotoxin exposure to the lowest possible level.
Collapse
Affiliation(s)
- Nicholas N A Kyei
- Institute of Public Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Unversität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany.
| | - Jillian L Waid
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
- Helen Keller International-Bangladesh Country Office, House 10E, Road 82, Gulshan 2, Dhaka, 1212, Bangladesh
| | - Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Sabine Gabrysch
- Institute of Public Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Unversität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
| |
Collapse
|
14
|
Toxicokinetics of a Single Oral Dose of OTA on Dezhou Male Donkeys. Toxins (Basel) 2023; 15:toxins15020088. [PMID: 36828403 PMCID: PMC9959279 DOI: 10.3390/toxins15020088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Ochratoxin (OTA) is widely present in a wide range of foods and feeds, causing adverse effects on animals and humans. This study aims to explore the toxicokinetics of OTA-contaminated materials on the Dezhou male donkey. Donkeys received a single orally dose of 2500 μg OTA/kg BW, obtained from Aspergillus ochraceus culture material. The concentrations of OTA in plasma collected at 0, 5, 10, 15, 20, 30, 45 min, and at 1, 1.5, 2, 3, 6, 9, 12, 24, 48, 72, 96 and 120 h were detected by HPLC. OTA eliminated in urine and feces were quantified at 6-h intervals up to 24 h and then at 4-h intervals up to 120 h. The results suggested that the maximum concentration of OTA in plasma was observed at 12 h after administration, with a mean value of 10.34 μg/mL. The total excretion in both urine and feces was about 10% of the intake until 120 h.
Collapse
|
15
|
Wang W, Zhu J, Cao Q, Zhang C, Dong Z, Feng D, Ye H, Zuo J. Dietary Catalase Supplementation Alleviates Deoxynivalenol-Induced Oxidative Stress and Gut Microbiota Dysbiosis in Broiler Chickens. Toxins (Basel) 2022; 14:toxins14120830. [PMID: 36548727 PMCID: PMC9784562 DOI: 10.3390/toxins14120830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Catalase (CAT) can eliminate oxygen radicals, but it is unclear whether exogenous CAT can protect chickens against deoxynivalenol (DON)-induced oxidative stress. This study aimed to investigate the effects of supplemental CAT on antioxidant property and gut microbiota in DON-exposed broilers. A total of 144 one-day-old Lingnan yellow-feathered male broilers were randomly divided into three groups (six replicates/group): control, DON group, and DON + CAT (DONC) group. The control and DON group received a diet without and with DON contamination, respectively, while the DONC group received a DON-contaminated diet with 200 U/kg CAT added. Parameter analysis was performed on d 21. The results showed that DON-induced liver enlargement (p < 0.05) was blocked by CAT addition, which also normalized the increases (p < 0.05) in hepatic oxidative metabolites contents and caspase-9 expression. Additionally, CAT addition increased (p < 0.05) the jejunal CAT and GSH-Px activities coupled with T-AOC in DON-exposed broilers, as well as the normalized DON-induced reductions (p < 0.05) of jejunal villus height (VH) and its ratio for crypt depth. There was a difference (p < 0.05) in gut microbiota among groups. The DON group was enriched (p < 0.05) with some harmful bacteria (e.g., Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, and Escherichia/Shigella) that elicited negative correlations (p < 0.05) with jejunal CAT activity, and VH. DONC group was differentially enriched (p < 0.05) with certain beneficial bacteria (e.g., Acidobacteriota, Anaerofustis, and Anaerotruncus) that could benefit intestinal antioxidation and morphology. In conclusion, supplemental CAT alleviates DON-induced oxidative stress and intestinal damage in broilers, which can be associated with its ability to improve gut microbiota, aside from its direct oxygen radical-scavenging activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Ye
- Correspondence: (H.Y.); (J.Z.)
| | | |
Collapse
|
16
|
Zheng R, Qing H, Ma Q, Huo X, Huang S, Zhao L, Zhang J, Ji C. A Newly Isolated Alcaligenes faecalis ANSA176 with the Capability of Alleviating Immune Injury and Inflammation through Efficiently Degrading Ochratoxin A. Toxins (Basel) 2022; 14:toxins14080569. [PMID: 36006231 PMCID: PMC9415193 DOI: 10.3390/toxins14080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most prevalent mycotoxins that threatens food and feed safety. Biodegradation of OTA has gained much attention. In this study, an Alcaligenes faecalis strain named ANSA176, with a strong OTA-detoxifying ability, was isolated from donkey intestinal chyme and characterized. The strain ANSA176 could degrade 97.43% of 1 mg/mL OTA into OTα within 12 h, at 37 °C. The optimal levels for bacterial growth were 22–37 °C and pH 6.0–9.0. The effects of ANSA176 on laying hens with an OTA-contaminated diet were further investigated. A total of 36 laying hens were assigned to three dietary treatments: control group, OTA (250 µg/kg) group, and OTA + ANSA176 (6.2 × 108 CFU/kg diet) group. The results showed that OTA decreased the average daily feed intake (ADFI) and egg weight (EW); meanwhile, it increased serum alanine aminopeptidase (AAP), leucine aminopeptidase (LAP), β2-microglobulin (β2-MG), immunoglobulin G (IgG), tumor necrosis factor-α (TNF-α), and glutathione reductase (GR). However, the ANSA176 supplementation inhibited or attenuated the OTA-induced damages. Taken together, OTA-degrading strain A. faecalis ANSA176 was able to alleviate the immune injury and inflammation induced by OTA.
Collapse
|