1
|
Dafni MF, Shih M, Manoel AZ, Yousif MYE, Spathi S, Harshal C, Bhatt G, Chodnekar SY, Chune NS, Rasool W, Umar TP, Moustakas DC, Achkar R, Kumar H, Naz S, Acuña-Chavez LM, Evgenikos K, Gulraiz S, Ali ESM, Elaagib A, Uggh IHP. Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention. Cancer Causes Control 2024:10.1007/s10552-024-01942-9. [PMID: 39672997 DOI: 10.1007/s10552-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Artificial intelligence is rapidly changing our world at an exponential rate and its transformative power has extensively reached important sectors like healthcare. In the fight against cancer, AI proved to be a novel and powerful tool, offering new hope for prevention and early detection. In this review, we will comprehensively explore the medical applications of AI, including early cancer detection through pathological and imaging analysis, risk stratification, patient triage, and the development of personalized prevention approaches. However, despite the successful impact AI has contributed to, we will also discuss the myriad of challenges that we have faced so far toward optimal AI implementation. There are problems when it comes to the best way in which we can use AI systemically. Having the correct data that can be understood easily must remain one of the most significant concerns in all its uses including sharing information. Another challenge that exists is how to interpret AI models because they are too complicated for people to follow through examples used in their developments which may affect trust, especially among medical professionals. Other considerations like data privacy, algorithm bias, and equitable access to AI tools have also arisen. Finally, we will evaluate possible future directions for this promising field that highlight AI's capacity to transform preventative cancer care.
Collapse
Affiliation(s)
- Marianna-Foteini Dafni
- School of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle Univerisity of Thessaloniki, Thessaloniki, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Shih
- School of Medicine, Newgiza University, Giza, Egypt.
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece.
| | - Agnes Zanotto Manoel
- Faculty of Medicine, Federal University of Rio Grande, Rio Grande do Sul, Brazil
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Yousif Elamin Yousif
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Stavroula Spathi
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Chorya Harshal
- Faculty of Medicine, Medical College Baroda, Vadodara, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Gaurang Bhatt
- All India Institute of Medical Sciences, Rishikesh, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Swarali Yatin Chodnekar
- Faculty of Medicine, Teaching University Geomedi LLC, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Nicholas Stam Chune
- Faculty of Medicine, University of Nairobi, Nairobi, Kenya
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Warda Rasool
- Faculty of Medicine, King Edward Medical University, Lahore, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Tungki Pratama Umar
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios C Moustakas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Robert Achkar
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Harendra Kumar
- Dow University of Health Sciences, Karachi, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Suhaila Naz
- Tbilisi State Medical University, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Luis M Acuña-Chavez
- Facultad de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Konstantinos Evgenikos
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Shaina Gulraiz
- Royal Bournemouth Hospital (University Hospitals Dorset), Bournemouth, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Eslam Salih Musa Ali
- University of Dongola Faculty of Medicine and Health Science, Dongola, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Amna Elaagib
- Faculty of Medicine AlMughtaribeen University, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Innocent H Peter Uggh
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| |
Collapse
|
2
|
Xianyu Z, Correia C, Ung CY, Zhu S, Billadeau DD, Li H. The Rise of Hypothesis-Driven Artificial Intelligence in Oncology. Cancers (Basel) 2024; 16:822. [PMID: 38398213 PMCID: PMC10886811 DOI: 10.3390/cancers16040822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer is a complex disease involving the deregulation of intricate cellular systems beyond genetic aberrations and, as such, requires sophisticated computational approaches and high-dimensional data for optimal interpretation. While conventional artificial intelligence (AI) models excel in many prediction tasks, they often lack interpretability and are blind to the scientific hypotheses generated by researchers to enable cancer discoveries. Here we propose that hypothesis-driven AI, a new emerging class of AI algorithm, is an innovative approach to uncovering the complex etiology of cancer from big omics data. This review exemplifies how hypothesis-driven AI is different from conventional AI by citing its application in various areas of oncology including tumor classification, patient stratification, cancer gene discovery, drug response prediction, and tumor spatial organization. Our aim is to stress the feasibility of incorporating domain knowledge and scientific hypotheses to craft the design of new AI algorithms. We showcase the power of hypothesis-driven AI in making novel cancer discoveries that can be overlooked by conventional AI methods. Since hypothesis-driven AI is still in its infancy, open questions such as how to better incorporate new knowledge and biological perspectives to ameliorate bias and improve interpretability in the design of AI algorithms still need to be addressed. In conclusion, hypothesis-driven AI holds great promise in the discovery of new mechanistic and functional insights that explain the complexity of cancer etiology and potentially chart a new roadmap to improve treatment regimens for individual patients.
Collapse
Affiliation(s)
- Zilin Xianyu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Z.X.); (C.C.); (C.Y.U.); (S.Z.); (D.D.B.)
| |
Collapse
|