1
|
Swords E, Kennedy BN, Tonelotto V. Assessment of ferroptosis as a promising candidate for metastatic uveal melanoma treatment and prognostication. Front Pharmacol 2024; 15:1466896. [PMID: 39411069 PMCID: PMC11473310 DOI: 10.3389/fphar.2024.1466896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults. Local resection, radiation therapy, and enucleation are the current first-line, primary UM treatments. However, regardless of the treatment received, around 50% of UM patients will develop metastatic disease within five to 7 years. In the largest published series of unselected patients with metastatic UM (mUM), the median survival time after diagnosis of metastasis was 3.6 months, with less than 1% of patients surviving beyond 5 years. Approved drugs for treatment of mUM include systemic treatment with tebentafusp-tebn or isolated hepatic perfusion (IHP) with melphalan. However, these drugs are only available to a subset of patients and improve survival by only a few months, highlighting the urgent need for new mUM treatments. Accurately predicting which patients are at high risk for metastases is also crucial. Researchers are developing gene expression signatures in primary UM to create reliable prognostic models aimed at improving patient follow-up and treatment strategies. In this review we discuss the evidence supporting ferroptosis, a non-apoptotic form of cell death, as a potential novel treatment target and prognosticator for UM.
Collapse
Affiliation(s)
- Ellie Swords
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Valentina Tonelotto
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Sun P, Wang Y, Liu X, Li Z, Cui D, Li Q, Wang Q, Wang J. Methylation-driven mechanisms of allergic rhinitis during pollen and non-pollen seasons using integrated bioinformatics analysis. Front Genet 2024; 15:1242974. [PMID: 38699230 PMCID: PMC11063319 DOI: 10.3389/fgene.2024.1242974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Background Allergic rhinitis (AR) is a widespread allergic airway disease that results from a complex interplay between genetic and environmental factors and affects approximately 10%-40% of the global population. Pollen is a common allergen, and exposure to pollen can cause epigenetic changes. However, the mechanism underlying pollen-induced DNA methylation changes and their potential effects on the allergic march are still unclear. The purpose of this study was to explore the methylation-driven mechanisms of AR during the pollen and non-pollen seasons using bioinformatics analysis and to investigate their relationship with asthma. Methods We downloaded DNA methylation and gene expression data from the GEO database (GSE50387: GSE50222, GSE50101) and identified differentially methylated positions (DMPs) and differentially expressed genes (DEGs) during the pollen and non-pollen seasons using the CHAMP and limma packages. Through correlation analysis, we identified methylation-driven genes and performed pathway enrichment analysis to annotate their functions. We incorporated external data on AR combined with asthma (GSE101720) for analysis to identify key CpGs that promote the transformation of AR to asthma. We also utilized external data on olive pollen allergy (GSE54522) for analysis to validate the methylation-driven genes. Weighted correlation network analysis (WGCNA) was employed to identify gene modules significantly correlated with pollen allergy. We extracted genes related to the key methylation-driven gene ZNF667-AS1 from the significant module and performed pathway intelligent clustering using KOBAS-i. We also utilized gene set enrichment analysis to explore the potential function of ZNF667-AS1. Results We identified 20 and 24 CpG-Gene pairings during the pollen and non-pollen seasons. After incorporating external data from GSE101720, we found that ZNF667-AS1 is a key gene that may facilitate the transformation of AR into asthma during the pollen season. This finding was further validated in another external dataset, GSE54522, which is associated with pollen allergy. WGCNA identified 17 modules, among which the blue module showed significant correlation with allergies. ZNF667-AS1 was located in the blue module. We performed pathway analysis on the genes correlated with ZNF667-AS1 extracted from the blue module and identified a prominent cluster of pathways in the KOBAS-i results, including Toll-like receptor (TLR) family, MyD88, MAPK, and oxidative stress. Gene set enrichment analysis around cg05508084 (paired with ZNF667-AS1) also indicated its potential involvement in initiating and modulating allergic inflammation from the perspective of TLR and MAPK signaling. Conclusion We identified methylation-driven genes and their related pathways during the pollen and non-pollen seasons in patients with AR and identified key CpGs that promote the transformation of AR into asthma due to pollen exposure. This study provides new insights into the underlying molecular mechanisms of the transformation of AR to asthma.
Collapse
Affiliation(s)
- Pengcheng Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Diankun Cui
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianru Li
- Qinghai Golmud Jianqiao Hospital, Golmud, Qinghai, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Tonelotto V, Costa-Garcia M, O'Reilly E, Smith KF, Slater K, Dillon ET, Pendino M, Higgins C, Sist P, Bosch R, Passamonti S, Piulats JM, Villanueva A, Tramer F, Vanella L, Carey M, Kennedy BN. 1,4-dihydroxy quininib activates ferroptosis pathways in metastatic uveal melanoma and reveals a novel prognostic biomarker signature. Cell Death Discov 2024; 10:70. [PMID: 38341410 DOI: 10.1038/s41420-023-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Uveal melanoma (UM) is an ocular cancer, with propensity for lethal liver metastases. When metastatic UM (MUM) occurs, as few as 8% of patients survive beyond two years. Efficacious treatments for MUM are urgently needed. 1,4-dihydroxy quininib, a cysteinyl leukotriene receptor 1 (CysLT1) antagonist, alters UM cancer hallmarks in vitro, ex vivo and in vivo. Here, we investigated the 1,4-dihydroxy quininib mechanism of action and its translational potential in MUM. Proteomic profiling of OMM2.5 cells identified proteins differentially expressed after 1,4-dihydroxy quininib treatment. Glutathione peroxidase 4 (GPX4), glutamate-cysteine ligase modifier subunit (GCLM), heme oxygenase 1 (HO-1) and 4 hydroxynonenal (4-HNE) expression were assessed by immunoblots. Biliverdin, glutathione and lipid hydroperoxide were measured biochemically. Association between the expression of a specific ferroptosis signature and UM patient survival was performed using public databases. Our data revealed that 1,4-dihydroxy quininib modulates the expression of ferroptosis markers in OMM2.5 cells. Biochemical assays validated that GPX4, biliverdin, GCLM, glutathione and lipid hydroperoxide were significantly altered. HO-1 and 4-HNE levels were significantly increased in MUM tumor explants from orthotopic patient-derived xenografts (OPDX). Expression of genes inhibiting ferroptosis is significantly increased in UM patients with chromosome 3 monosomy. We identified IFerr, a novel ferroptosis signature correlating with UM patient survival. Altogether, we demontrated that in MUM cells and tissues, 1,4-dihydroxy quininib modulates key markers that induce ferroptosis, a relatively new type of cell death driven by iron-dependent peroxidation of phospholipids. Furthermore, we showed that high expression of specific genes inhibiting ferroptosis is associated with a worse UM prognosis, thus, the IFerr signature is a potential prognosticator for which patients develop MUM. All in all, ferroptosis has potential as a clinical biomarker and therapeutic target for MUM.
Collapse
Affiliation(s)
- Valentina Tonelotto
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Eve O'Reilly
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kaelin Francis Smith
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kayleigh Slater
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Eugene T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marzia Pendino
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Catherine Higgins
- UCD School of Mathematics & Statistics, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Paola Sist
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Rosa Bosch
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Alberto Villanueva
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, Barcelona, Spain
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Michelle Carey
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Breandán N Kennedy
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
4
|
Loza M, Vandenbon A, Nakai K. Epigenetic characterization of housekeeping core promoters and their importance in tumor suppression. Nucleic Acids Res 2024; 52:1107-1119. [PMID: 38084904 PMCID: PMC10853790 DOI: 10.1093/nar/gkad1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
In this research, we elucidate the presence of around 11,000 housekeeping cis-regulatory elements (HK-CREs) and describe their main characteristics. Besides the trivial promoters of housekeeping genes, most HK-CREs reside in promoter regions and are involved in a broader role beyond housekeeping gene regulation. HK-CREs are conserved regions rich in unmethylated CpG sites. Their distribution highly correlates with that of protein-coding genes, and they interact with many genes over long distances. We observed reduced activity of a subset of HK-CREs in diverse cancer subtypes due to aberrant methylation, particularly those located in chromosome 19 and associated with zinc finger genes. Further analysis of samples from 17 cancer subtypes showed a significantly increased survival probability of patients with higher expression of these genes, suggesting them as housekeeping tumor suppressor genes. Overall, our work unravels the presence of housekeeping CREs indispensable for the maintenance and stability of cells.
Collapse
Affiliation(s)
- Martin Loza
- The Institute of Medical Science, The University of Tokyo, Japan
| | - Alexis Vandenbon
- Institute for Life and Medical Sciences, Kyoto University, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Japan
| |
Collapse
|
5
|
Masrour M, Khanmohammadi S, Fallahtafti P, Hashemi SM, Rezaei N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e18109. [PMID: 38193829 PMCID: PMC10844705 DOI: 10.1111/jcmm.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been applied as biomarkers for melanoma patients. In this systematic review and meta-analysis, we investigated the diagnostic and prognostic value of lncRNAs. We used the keywords 'lncRNA' and 'melanoma' to search databases for studies published before June 14th, 2023. The specificity, sensitivity and AUC were utilized to assess diagnostic accuracy and the prognostic value was assessed using overall survival, progression-free survival and disease-free survival hazard ratios. After screening 1191 articles, we included seven studies in the diagnostic evaluation section and 17 studies in the prognosis evaluation section. The Reitsma bivariate model estimated a cumulative sensitivity of 0.724 (95% CI: 0.659-0.781, p < 0.001) and specificity of 0.812 (95% CI: 0.752-0.859, p < 0.001). The pooled AUC was 0.780 (95% CI: 0.749-0.811, p < 0.0001). The HR for overall survival was 2.723 (95% CI: 2.259-3.283, p < 0.0001). Two studies reported an HR for overall survival less than one, with an HR of 0.348 (95% CI: 0.200-0.607, p < 0.0002). The HR for progression-free survival was 2.913 (95% CI: 2.050-4.138, p < 0.0001). Four studies reported an HR less than one, with an HR of 0.457 (95% CI: 0.256-0.817). The HR for disease-free survival was 2.760 (95% CI: 2.009-3.792, p < 0.0001). In conclusion, the expression of lncRNAs in melanoma patients affects survival and prognosis. LncRNAs can also be employed as diagnostic biomarkers.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Shaghayegh Khanmohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
| | - Parisa Fallahtafti
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Seyedeh Melika Hashemi
- School of MedicineTehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Non‐Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences InstituteTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Shu W, Wang JZ, Zhu X, Wang K, Cherepanoff S, Conway RM, Madigan MC, Lim LA, Zhu H, Zhu L, Murray M, Zhou F. Lapatinib dysregulates HER2 signaling and impairs the viability of human uveal melanoma cells. J Cancer 2023; 14:3477-3495. [PMID: 38021158 PMCID: PMC10647189 DOI: 10.7150/jca.88446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Uveal melanoma (UM) is the principal type of intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease with very poor survival. There are few drugs available to treat the primary or metastatic UM. This study was undertaken to evaluate the anti-cancer effect of lapatinib and corroborate the potential of HER2 inhibition in the treatment of UM. The anti-UM activity of lapatinib was assessed using cell viability, cell death and cell cycle analysis, and its anti-metastatic actions were evaluated using would healing, invasion and colony formation assays. Immunoblotting was used to substantiate the actions of lapatinib on apoptotic and HER2 signaling. The anti-UM activity of lapatinib was further evaluated in a UM xenograft mouse model. Lapatinib decreased the viability of four UM cell lines (IC50: 3.67-6.53 µM). The antiproliferative activity of lapatinib was corroborated in three primary cell lines isolated from UM patient tumors. In UM cell lines, lapatinib promoted apoptosis and cell cycle arrest, and strongly inhibited cell migration, invasion and reproductive cell growth. Lapatinib dysregulated HER2-AKT/ERK/PI3K signalling leading to the altered expression of apoptotic factors and cell cycle mediators in UM cell lines. Importantly, lapatinib suppressed tumourigenesis in mice carrying UM cell xenografts. Together the present findings are consistent with the assertion that HER2 is a viable therapeutic target in UM. Lapatinib is active in primary and metastatic UM as a clinically approved HER2 inhibitor. The activity of lapatinib in UM patients could be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Wenying Shu
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong Province 511400, China
| | - Janney Z Wang
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063, China
| | - Svetlana Cherepanoff
- SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - R. Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW 2006, Australia
| | - Li-Anne Lim
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW 2006, Australia
| |
Collapse
|
7
|
Lu Z, Lu Z, Lai Y, Zhou H, Li Z, Cai W, Xu Z, Luo H, Chen Y, Li J, Zhang J, He Z, Tang F. A comprehensive analysis of FBN2 in bladder cancer: A risk factor and the tumour microenvironment influencer. IET Syst Biol 2023; 17:162-173. [PMID: 37337404 PMCID: PMC10439492 DOI: 10.1049/syb2.12067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/15/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Bladder cancer (BLCA) is a common and difficult-to-manage disease worldwide. Most common type of BLCA is urothelial carcinoma (UC). Fibrillin 2 (FBN2) was first discovered while studying Marfan syndrome, and its encoded products are associated with elastin fibres. To date, the role of FBN2 in BLCA remains unclear. The authors first downloaded data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The patients were divided into high FBN2 expression and low FBN2 expression groups, and the survival curve, clinical characteristics, tumour microenvironment (TME), and immune cell differences were analysed between the two groups. Then, the differentially expressed genes (DEGs) were filtered, and functional enrichment for DEGs was performed. Finally, chemotherapy drug susceptibility analysis based on the high and low FBN2 groups was conducted. The authors found upregulated expression of FBN2 in BLCA and proved that FBN2 could be an independent prognostic factor for BLCA. TME analysis showed that the expression of FBN2 affects several aspects of the TME. The upregulated expression of FBN2 was associated with a high stromal score, which may lead to immunosuppression and be detrimental to immunotherapy. In addition, the authors found that NK cells resting, macrophage M0 infiltration, and other phenomena of immune cell infiltration appeared in the high expression group of FBN2. The high expression of FBN2 was related to the high sensitivity of some chemotherapy drugs. The authors systematically investigated the effects and mechanisms of FBN2 on BLCA and provided a new understanding of the role of FBN2 as a risk factor and TME influencer in BLCA.
Collapse
Affiliation(s)
- Zechao Lu
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zeguang Lu
- The Second Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yongchang Lai
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Haobin Zhou
- The First Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhibiao Li
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wanyan Cai
- Department of Social and Behavioural SciencesCity University of Hong KongHong KongChina
| | - Zeyao Xu
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hongcheng Luo
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yushu Chen
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Jianyu Li
- The First Clinical College of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jishen Zhang
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Zhaohui He
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Fucai Tang
- Department of UrologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
8
|
Wu K, Chang F, Li W, Wei D, Cao S, Xie Y, Li C, Lei D. Preliminary study based on methylation and transcriptome gene sequencing of lncRNAs and immune infiltration in hypopharyngeal carcinoma. Front Oncol 2023; 13:1117622. [PMID: 37182154 PMCID: PMC10168126 DOI: 10.3389/fonc.2023.1117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hypopharyngeal squamous cell cancer (HSCC) is one of the most malignant tumors of the head and neck. It is not easy to detect in the early stage due to its hidden location; thus, lymph node metastasis is highly likely at diagnosis, leading to a poor prognosis. It is believed that epigenetic modification is related to cancer invasion and metastasis. However, the role of m6A-related lncRNA in the tumor microenvironment (TME) of HSCC remains unclear. Methods The whole transcriptome and methylation sequencing of 5 pairs of HSCC tissues and adjacent tissues were performed to identify the methylation and transcriptome profiles of lncRNAs. The biological significance of lncRNAs differentially expressing the m6A peak was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. By constructing an m6A lncRNA-microRNA network, the mechanism of m6A lncRNAs in HSCC was analyzed. The relative expression levels of selected lncRNAs were examined by quantitative polymerase chain reaction. The CIBERSORT algorithm was used to evaluate the relative proportion of immune cell infiltration in HSCC and paracancerous tissues. Results Based on an in-depth analysis of the sequencing results, 14413 differentially expressed lncRNAs were revealed, including 7329 up-regulated and 7084 down-regulated lncRNAs. Additionally, 4542 up-methylated and 2253 down-methylated lncRNAs were detected. We demonstrated methylation patterns and gene expression profiles of lncRNAs of HSCC transcriptome. In the intersection analysis of lncRNAs and methylated lncRNAs, 51 lncRNAs with up-regulated transcriptome and methylation and 40 lncRNAs with down-regulated transcriptome and methylation were screened, and significantly differentiated lncRNAs were further studied. In the immune cell infiltration analysis, B cell memory was significantly elevated in cancer tissue, while γδT cell amount was significantly decreased. Conclusion m6A modification of lncRNAs might be involved in HSCC pathogenesis. Infiltration of immune cells in HSCC might provide a new direction for its treatment. This study provides new insights for exploring the possible HSCC pathogenesis and searching for new potential therapeutic targets.
Collapse
Affiliation(s)
- Kainan Wu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fen Chang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yulin Xie
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ce Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
Wang T, Bai J, Zhang Y, Xue Y, Peng Q. N6-Methyladenosine regulator RBM15B acts as an independent prognostic biomarker and its clinical significance in uveal melanoma. Front Immunol 2022; 13:918522. [PMID: 36003405 PMCID: PMC9393712 DOI: 10.3389/fimmu.2022.918522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent intraocular malignant tumor in adults. N6-Methyladenosine (m6A) methylation is recognized as the most critical epigenetic change and is implicated in the development of many malignancies. However, its prognostic value in UM is poorly understood. RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) help us better understand the relationship between m6A regulators and UM patients. Herein, four UM groups established by consensus clustering were shown to have different immune cell infiltrations and prognostic survival. Five m6A regulators, including RBM15B, IGF2BP1, IGF2BP2, YTHDF3, and YTHDF1, were associated with the prognosis of UM patients. Intriguingly, RBM15B was confirmed to be the only independent prognostic factor for UM and it was significantly correlated with clinicopathologic characteristics of UM. Notably, RBM15B expression was significantly negatively correlated with immune checkpoints. Furthermore, LINC00665/hsa-let-7b-5p/RBM15B axis and LINC00638/hsa-miR-103a-3p/RBM15B axis were found to be potential prognostic biomarkers in UM. In a nutshell, this work, through bioinformatics analysis, systematically described the gene signatures and prognostic values of m6A regulators. RBM15B is an independent protective prognostic factor, which may help us better understand the crosstalk within UM.
Collapse
|