1
|
Wang S, Sun Y, Shao D, Pan Y, Gao X, Zhao P, Liu Q, Shang G, Shang W, Fu Z, Sun Y. High expression of serine protease inhibitor kazal type 1 predicts poor prognosis and promotes the progression and invasion of oral tongue squamous cell carcinoma. Arch Oral Biol 2024; 164:106003. [PMID: 38781741 DOI: 10.1016/j.archoralbio.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression of serine protease inhibitor kazal type 1 (SPINK1) and its carcinogenic effect in oral tongue squamous cell carcinoma (OTSCC). DESIGN Initially, bioinformatics analysis was conducted using data from The Cancer Genome Atlas and Gene Expression Omnibus to compare SPINK1 mRNA expression between malignant and adjacent tissues. Subsequently, the impact of differential expression on survival and other clinical variables was examined. Additionally, histology microarray analysis was performed to assess SPINK1 protein expression in 35 cases of malignant and adjacent tissues. Finally, alterations in SPINK1 expression were evaluated to determine its biological phenotypes in OTSCC, including proliferation, apoptosis, invasion, and metastasis. RESULTS OTSCC tissues exhibit higher levels of SPINK1 compared to surrounding cancerous tissues. Notably, increased SPINK1 expression correlates with the pathological N stage and independently predicts overall survival among patients with OTSCC. CONCLUSION Suppression of SPINK1 inhibited OTSCC cell proliferation, invasion, and motility while promoting apoptosis. These findings suggest that SPINK1 may serve as a prognostic biomarker as well as a potential therapeutic target for managing OTSCC.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China; Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yaping Sun
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Dan Shao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yunjie Pan
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Xiaoyan Gao
- Traditional Chinese Medical Hospital of Huangdao District, Qingdao 266499,China
| | - Peng Zhao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Qiaoling Liu
- Department of Oncology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Gaishuang Shang
- Department of Scientific Research, Qingdao East Sea Pharmaceutical Co., Ltd., Qingdao 266431, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, PLA, Beijing 100142, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
Arvanitakis K, Papadakos SP, Vakadaris G, Chatzikalil E, Stergiou IE, Kalopitas G, Theocharis S, Germanidis G. Shedding light on the role of LAG-3 in hepatocellular carcinoma: unraveling immunomodulatory pathways. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by chronic inflammation and complex alterations within the tumor microenvironment (TME). Lymphocyte activation gene 3 (LAG-3), also known as CD223, has gained prominence as a potential next-generation immune checkpoint, maintaining continuous expression in response to persistent antigen exposure within the TME, warranting our attention. In patients with HCC, LAG-3 expression on T cells, regulatory T cells (Tregs), and natural killer (NK) cells contributes to immune evasion, while high expression of LAG-3 leads to increased angiogenesis and poor prognosis. By interacting with major histocompatibility complex class II molecules, LAG-3 promotes T cell exhaustion and suppresses antitumor responses, often in collaboration with other immune checkpoints like programmed cell death protein 1 (PD-1), while on Tregs and NK cells, LAG-3 modulates their suppressive functions, indirectly facilitating tumor immune escape. LAG-3 expression may offer prognostic insights, correlating with disease progression and outcomes in HCC patients, while various preclinical studies highlight the potential of LAG-3-targeted therapies in reinvigorating immune responses against HCC, with a few combination approaches targeting LAG-3 alongside other checkpoints demonstrating synergistic effects in restoring T cell function. Therefore, harnessing LAG-3 as a therapeutic target holds promise for enhancing antitumor immunity and potentially improving HCC treatment outcomes. Our narrative review aims to delve into the full spectrum of LAG-3 signaling in HCC, with the goal of a better understanding of the pathophysiological and immunological basis of its use to arrest HCC growth and development.
Collapse
|
3
|
Chen D, Shi Z, Gao X, Yang Y, Lei X, Hu Y. SPINK1 is a Potential Diagnostic and Prognostic Biomarker for Sepsis. Infect Drug Resist 2024; 17:875-884. [PMID: 38476769 PMCID: PMC10929552 DOI: 10.2147/idr.s440117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose There are no satisfactory diagnostic biomarkers for sepsis. Accordingly, this study screened biomarkers valuable for sepsis diagnosis and prognosis using data-independent acquisition (DIA) combined with clinical data analysis. Patients and Methods Serine protease inhibitor Kazal-type 1 (SPINK1) is a differentially expressed protein that was screened using DIA and bioinformatics in sepsis patients (n = 22) and healthy controls (n = 10). The plasma SPINK1 levels were detected using an enzyme-linked immunosorbent assay (ELISA) in an expanded population (sepsis patients, n = 52; healthy controls, n = 10). The diagnostic value of SPINK1 in sepsis was evaluated using receiver operating characteristic (ROC) curve analysis based on clinical data. The prognostic value of SPINK1 for sepsis was evaluated using correlation and survival analyses. Results DIA quality control identified 78 differential proteins (72 upregulated and six downregulated), among which SPINK1 was highly expressed in sepsis. The ELISA results suggested that SPINK1 expression was significantly elevated in the sepsis group (P < 0.05). ROC analysis of SPINK1 yielded an area under the curve (AUC) of 0.9096. Combining SPINK1 with procalcitonin (PCT) for ROC analysis yielded an AUC of 1. SPINK1 expression was positively correlated with the Sequential Organ Failure Assessment (SOFA) score (r = 3497, P = 0.0053) and APACHE II score (r = 3223, P = 0.0106). High plasma SPINK1 protein expression was negatively correlated with the 28-day survival rate of patients with sepsis (P = 0.0149). Conclusion The plasma of sepsis patients contained increased SPINK1 protein expression. Combining SPINK1 with PCT might have a high diagnostic value for sepsis. SPINK1 was associated with the SOFA score, APACHE II score, and the 28-day survival rate in patients with sepsis.
Collapse
Affiliation(s)
- Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Zhangjing Shi
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaolan Gao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yuxiang Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
4
|
Jia J, Marazioti A, Voulgaridis A, Psallidas I, Lamort AS, Iliopoulou M, Krontira AC, Lilis I, Asciak R, Kanellakis NI, Rahman NM, Karkoulias K, Spiropoulos K, Liu R, Kaiser JC, Stathopoulos GT. Clinical identification of malignant pleural effusions. Transl Oncol 2024; 39:101800. [PMID: 37839174 PMCID: PMC10587755 DOI: 10.1016/j.tranon.2023.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION Pleural effusions frequently signal disseminated cancer. Diagnostic markers of pleural malignancy at presentation that would assess cancer risk and would streamline diagnostic decisions remain unidentified. METHODS A consecutive cohort of 323 patients with pleural effusion (PE) from different etiologies were recruited between 2013 and 2017 and was retrospectively analyzed. Data included history, chest X-ray, and blood/pleural fluid cell counts and biochemistry. Group comparison, receiver-operator characteristics, unsupervised hierarchical clustering, binary logistic regression, and random forests were used to develop the malignant pleural effusion detection (MAPED) score. MAPED was validated in an independent retrospective UK cohort (n = 238). RESULTS Five variables showed significant diagnostic power and were incorporated into the 5-point MAPED score. Age > 55 years, effusion size > 50% of the most affected lung field, pleural neutrophil count 〈 2,500/mm3, effusion protein 〉 3.5 g/dL, and effusion lactate dehydrogenase > 250 U/L, each scoring one point, predicted underlying cancer with the area under curve(AUC) = 0.819 (P < 10-15) in the derivation cohort. The integrated discrimination improvement of MAPED scores showed an increase compared to cytology (p <0.001). Decision curve analysis indicated that the MAPED score generated net clinical benefit. In the validation dataset, the AUC of MAPED scores was 0.723 ( P = 3 × 10-9) for the MAPED score. Interestingly, MAPED correctly identified 33/42(79%) of cytology-negative patients that indeed had cancer. CONCLUSIONS The MAPED score identifies malignant pleural effusions with satisfactory accuracy and can be used complementary to cytology to streamline diagnostic procedures. CONDENSED ABSTRACT Diagnostic markers for malignant pleural effusions remain uncertain. The MAPED score identifies malignant pleural effusions and complements cytology and confers no additional risk to the patient or cost to the healthcare system.
Collapse
Affiliation(s)
- Jianlong Jia
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München, Germany and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany; German Center for Lung Research (DZL), Gießen, Hesse 35392, Germany
| | - Antonia Marazioti
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Apostolos Voulgaridis
- Department of Pulmonary Medicine, Rio University Hospital, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Ioannis Psallidas
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece; Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E 6BT, United Kingdom; Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München, Germany and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany; German Center for Lung Research (DZL), Gießen, Hesse 35392, Germany
| | - Marianthi Iliopoulou
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Anthi C Krontira
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Ioannis Lilis
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Rachelle Asciak
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom
| | - Nikolaos I Kanellakis
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece; Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom
| | - Najib M Rahman
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, United Kingdom
| | - Kyriakos Karkoulias
- Department of Pulmonary Medicine, Rio University Hospital, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Konstantinos Spiropoulos
- Department of Pulmonary Medicine, Rio University Hospital, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece
| | - Ruonan Liu
- Institute of Infection and Immunity, College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an China
| | - Jan-Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Center Munich-German Research Center for Environmental Health (HMGU), Neuherberg, Bavaria 85764, Germany
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München, Germany and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany; German Center for Lung Research (DZL), Gießen, Hesse 35392, Germany; Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia 26504, Greece.
| |
Collapse
|
5
|
Man KF, Zhou L, Yu H, Lam KH, Cheng W, Yu J, Lee TK, Yun JP, Guan XY, Liu M, Ma S. SPINK1-induced tumor plasticity provides a therapeutic window for chemotherapy in hepatocellular carcinoma. Nat Commun 2023; 14:7863. [PMID: 38030644 PMCID: PMC10687140 DOI: 10.1038/s41467-023-43670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor lineage plasticity, considered a hallmark of cancer, denotes the phenomenon in which tumor cells co-opt developmental pathways to attain cellular plasticity, enabling them to evade targeted therapeutic interventions. However, the underlying molecular events remain largely elusive. Our recent study identified CD133/Prom1 in hepatocellular carcinoma (HCC) tumors to mark proliferative tumor-propagating cells with cancer stem cell-like properties, that follow a dedifferentiation trajectory towards a more embryonic state. Here we show SPINK1 to strongly associate with CD133 + HCC, and tumor dedifferentiation. Enhanced transcriptional activity of SPINK1 is mediated by promoter binding of ELF3, which like CD133, is found to increase following 5-FU and cisplatin treatment; while targeted depletion of CD133 will reduce both ELF3 and SPINK1. Functionally, SPINK1 overexpression promotes tumor initiation, self-renewal, and chemoresistance by driving a deregulated EGFR-ERK-CDK4/6-E2F2 signaling axis to induce dedifferentiation of HCC cells into their ancestral lineages. Depleting SPINK1 function by neutralizing antibody treatment or in vivo lentivirus-mediated Spink1 knockdown dampens HCC cancer growth and their ability to resist chemotherapy. Targeting oncofetal SPINK1 may represent a promising therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Ki-Fong Man
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Zhou
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Chen M, Wu GB, Xie ZW, Shi DL, Luo M. A novel diagnostic four-gene signature for hepatocellular carcinoma based on artificial neural network: Development, validation, and drug screening. Front Genet 2022; 13:942166. [PMID: 36246599 PMCID: PMC9554094 DOI: 10.3389/fgene.2022.942166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers with high mortality in the world. HCC screening and diagnostic models are becoming effective strategies to reduce mortality and improve the overall survival (OS) of patients. Here, we expected to establish an effective novel diagnostic model based on new genes and explore potential drugs for HCC therapy. Methods: The gene expression data of HCC and normal samples (GSE14811, GSE60502, GSE84402, GSE101685, GSE102079, GSE113996, and GSE45436) were downloaded from the Gene Expression Omnibus (GEO) dataset. Bioinformatics analysis was performed to distinguish two differentially expressed genes (DEGs), diagnostic candidate genes, and functional enrichment pathways. QRT-PCR was used to validate the expression of diagnostic candidate genes. A diagnostic model based on candidate genes was established by an artificial neural network (ANN). Drug sensitivity analysis was used to explore potential drugs for HCC. CCK-8 assay was used to detect the viability of HepG2 under various presentative chemotherapy drugs. Results: There were 82 DEGs in cancer tissues compared to normal tissue. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and infiltrating immune cell analysis were administered and analyzed. Diagnostic-related genes of MT1M, SPINK1, AKR1B10, and SLCO1B3 were selected from DEGs and used to construct a diagnostic model. The receiver operating characteristic (ROC) curves were 0.910 and 0.953 in the training and testing cohorts, respectively. Potential drugs, including vemurafenib, LOXO-101, dabrafenib, selumetinib, Arry-162, and NMS-E628, were found as well. Vemurafenib, dabrafenib, and selumetinib were observed to significantly affect HepG2 cell viability. Conclusion: The diagnostic model based on the four diagnostic-related genes by the ANN could provide predictive significance for diagnosis of HCC patients, which would be worthy of clinical application. Also, potential chemotherapy drugs might be effective for HCC therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Wen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan-Li Shi
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| |
Collapse
|