1
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother 2024; 176:116912. [PMID: 38850667 DOI: 10.1016/j.biopha.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a global digestive system disease and one of the important causes of gastric cancer. The incidence of CAG has been increasing yearly worldwide. PURPOSE This article reviews the latest research on the common causes and future therapeutic targets of CAG as well as the pharmacological effects of corresponding clinical drugs. We provide a detailed theoretical basis for further research on possible methods for the treatment of CAG and reversal of the CAG process. RESULTS CAG often develops from chronic gastritis, and its main pathological manifestation is atrophy of the gastric mucosa, which can develop into gastric cancer. The drug treatment of CAG can be divided into agents that regulate gastric acid secretion, eradicate Helicobacter. pylori (H. pylori), protect gastric mucous membrane, or inhibit inflammatory factors according to their mechanism of action. Although there are limited specific drugs for the treatment of CAG, progress is being made in defining the pathogenesis and therapeutic targets of the disease. Growing evidence shows that NF-κB, PI3K/AKT, Wnt/ β-catenin, MAPK, Toll-like receptors (TLRs), Hedgehog, and VEGF signaling pathways play an important role in the development of CAG.
Collapse
Affiliation(s)
- Jinhao Jia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Special Administrative Region of China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Wang YK, Li YY, Wang B, Ran DM, Zhu CY, Li P, Jiang B, Wang SN. Histopathological staging of atrophic lesions of gastric mucosa. Heliyon 2024; 10:e27845. [PMID: 38560685 PMCID: PMC10979135 DOI: 10.1016/j.heliyon.2024.e27845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To study the histopathological staging of atrophic lesions of the gastric mucosa. Methods Histology and immunohistochemistry were used to closely examine 2144 specimens of atrophic gastric mucosa that were taken from endoscopic biopsies. Results When the gastric mucosa epithelium is affected by infection, chemical stimulation, immune factors, genetic factors, and other factors, it may cause an atrophy of gastric mucosa epithelium and a decrease in the number of glands, intestinal metaplasia, hyperplasia of smooth muscle fibers, and atrophy of stem cells in the proliferative zone. In this study, we characterized the above lesions as atrophic lesions of the gastric mucosa. Based on the morphological and histological characteristics of the lesion, as well as the law of cell proliferation and transformation during its occurrence and development, we propose five stages. We also noted the onset age, gender correlation, and histopathological characteristics of each stage of gastric mucosal atrophies. Conclusion Understanding the pathological staging of gastric mucosal atrophy is essential for treating patients correctly and keeping track of changes in malignant cells. It is also very important in preventing the initiation of gastric cancer or from getting worse.
Collapse
Affiliation(s)
- Yang-kun Wang
- The Fourth People"s Hospital of Longgang District, Shenzhen, 518123, China
| | - Ying-ying Li
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Bin Wang
- Department of Radiation Therapy, Cancer Center, Shanghai Jiahui International Hospital, Shanghai, 200000, China
| | - Dong-mei Ran
- Department of Pathology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Chao-ya Zhu
- Third Affiliated Hospital of Zhengzhou University, Shenzhen, 450052, China
| | - Ping Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Jiang
- Department of Pathology, No. 990 Hospital of the PLA Joint Logistics Support Force, Zhumadian, 463000, China
| | - Su-nan Wang
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Pelizzaro F, Cardin R, Sarasini G, Minotto M, Carlotto C, Fassan M, Palo M, Farinati F, Zingone F. Crosstalk between MicroRNAs and Oxidative Stress in Coeliac Disease. Inflamm Intest Dis 2024; 9:11-21. [PMID: 38298886 PMCID: PMC10827301 DOI: 10.1159/000536107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in regulating gene expression. Many studies, mostly conducted on pediatric patients, suggested that oxidative stress and several miRNAs may play an important role in coeliac disease (CeD) pathogenesis. However, the interplay between oxidative stress and miRNA regulatory functions in CeD remains to be clarified. In this review, we aimed to perform a literature review on the role of miRNAs and oxidative stress in adult CeD patients and to analyze their potential interactions. In this direction, we also reported the preliminary results of a pilot study we recently performed.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padua, Italy
| | - Romilda Cardin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Giulia Sarasini
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Milena Minotto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Chiara Carlotto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padua, Italy
| |
Collapse
|
4
|
Iwamuro M, Tanaka T, Otsuka M. Update in Molecular Aspects and Diagnosis of Autoimmune Gastritis. Curr Issues Mol Biol 2023; 45:5263-5275. [PMID: 37504250 PMCID: PMC10378041 DOI: 10.3390/cimb45070334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Recent studies have advanced our understanding of the pathophysiology of autoimmune gastritis, particularly its molecular aspects. The most noteworthy recent advancement lies in the identification of several candidate genes implicated in the pathogenesis of pernicious anemia through genome-wide association studies. These genes include PTPN22, PNPT1, HLA-DQB1, and IL2RA. Recent studies have also directed attention towards other genes such as ATP4A, ATP4B, AIRE, SLC26A7, SLC26A9, and BACH2 polymorphism. In-depth investigations have been conducted on lymphocytes and cytokines, including T helper 17 cells, interleukin (IL)-17A, IL-17E, IL-17F, IL-21, IL-19, tumor necrosis factor-α, IL-15, transforming growth factor-β1, IL-13, and diminished levels of IL-27. Animal studies have explored the involvement of roseolovirus and H. pylori in relation to the onset of the disease and the process of carcinogenesis, respectively. Recent studies have comprehensively examined the involvement of autoantibodies, serum pepsinogen, and esophagogastroduodenoscopy in the diagnosis of autoimmune gastritis. The current focus lies on individuals demonstrating atypical presentations of the disease, including those diagnosed in childhood, those yielding negative results for autoantibodies, and those lacking the typical endoscopic characteristics of mucosal atrophy. Here, we discuss the recent developments in this field, focusing on genetic predisposition, epigenetic modifications, lymphocytes, cytokines, oxidative stress, infectious agents, proteins, microRNAs, autoantibodies, serum pepsinogen, gastrin, esophagogastroduodenoscopy and microscopic findings, and the risk of gastric neoplasm.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
5
|
Liu AR, Yan ZW, Jiang LY, Lv Z, Li YK, Wang BG. The role of non-coding RNA in the diagnosis and treatment of Helicobacter pylori-related gastric cancer, with a focus on inflammation and immune response. Front Med (Lausanne) 2022; 9:1009021. [PMID: 36314013 PMCID: PMC9606473 DOI: 10.3389/fmed.2022.1009021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the globally recognized causative factors of gastric cancer (GC). Currently, no definite therapy and drugs for H. pylori-related GC have been widely acknowledged although H. pylori infection could be eradicated in early stage. Inflammation and immune response are spontaneous essential stages during H. pylori infection. H pylori may mediate immune escape by affecting inflammation and immune response, leading to gastric carcinogenesis. As an important component of transcriptome, non-coding RNAs (ncRNAs) have been proven to play crucial roles in the genesis and development of H. pylori-induced GC. This review briefly described the effects of ncRNAs on H. pylori-related GC from the perspective of inflammation and immune response, as well as their association with inflammatory reaction and immune microenvironment. We aim to explore the potential of ncRNAs as markers for the early diagnosis, prognosis, and treatment of H. pylori-related GC. The ncRNAs involved in H. pylori-related GC may all hold promise as novel therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Zi-wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Li-yue Jiang
- Tangdu Hospital of the Fourth Military Medical University, Xi’an, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Zhi Lv,
| | - Yan-ke Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Yan-ke Li,
| | - Ben-gang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of Hepatobiliary Surgery, Institute of General Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Ben-gang Wang,
| |
Collapse
|