1
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Hu Y, Kong F, Guo H, Hua Y, Zhu Y, Zhang C, Qadeer A, Xiao Y, Cai Q, Ji S. Drosophila eIF3f1 mediates host immune defense by targeting dTak1. EMBO Rep 2024; 25:1415-1435. [PMID: 38279019 PMCID: PMC10933477 DOI: 10.1038/s44319-024-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Eukaryotic translation initiation factors have long been recognized for their critical roles in governing the translation of coding RNAs into peptides/proteins. However, whether they harbor functional activities at the post-translational level remains poorly understood. Here, we demonstrate that eIF3f1 (eukaryotic translation initiation factor 3 subunit f1), which encodes an archetypal deubiquitinase, is essential for the antimicrobial innate immune defense of Drosophila melanogaster. Our in vitro and in vivo evidence indicate that the immunological function of eIF3f1 is dependent on the N-terminal JAMM (JAB1/MPN/Mov34 metalloenzymes) domain. Mechanistically, eIF3f1 physically associates with dTak1 (Drosophila TGF-beta activating kinase 1), a key regulator of the IMD (immune deficiency) signaling pathway, and mediates the turnover of dTak1 by specifically restricting its K48-linked ubiquitination. Collectively, these results provide compelling insight into a noncanonical molecular function of a translation initiation factor that controls the post-translational modification of a target protein.
Collapse
Affiliation(s)
- Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Institutes of Brain Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Huimin Guo
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Center for Biological Technology, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Abdul Qadeer
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yihua Xiao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Qingshuang Cai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67400, France.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| |
Collapse
|
3
|
Li Q, Zhang C, Zhang C, Duan R, Hua Y. CG4968 positively regulates the immune deficiency pathway by targeting Imd protein in Drosophila. PeerJ 2023; 11:e14870. [PMID: 36778143 PMCID: PMC9912943 DOI: 10.7717/peerj.14870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Drosophila melanogaster relies solely on innate immunity to defend against various microbial pathogens. Although it is well-known that the adaptor protein Imd undergoes K63-linked ubiquitination to activate the downstream signaling cascades, its involvement with K48-linked ubiquitination and what is responsible for controlling this modification remain largely unknown. In this study, we explored the immunological function of CG4968, which encodes a typical ovarian tumour-associated protease (OTU)-type deubiquitinase (Dub) in flies. Our in vitro and vivo evidence demonstrated that CG4968 plays a positive role in governing the immune deficiency (IMD), but not the Toll innate immune response in an OTU domain-dependent manner. Mechanistically, we found that CG4968 is associated with Imd to restrict its K48-linked ubiquitination, thereby contributing to its turnover. Collectively, our study uncovered a novel regulatory mechanism involving the K48-linked ubiquitination of Imd in Drosophila innate immunity.
Collapse
|
4
|
Zhu Y, Liu L, Zhang C, Zhang C, Han T, Duan R, Jin Y, Guo H, She K, Xiao Y, Goto A, Cai Q, Ji S. Endoplasmic reticulum-associated protein degradation contributes to Toll innate immune defense in Drosophila melanogaster. Front Immunol 2023; 13:1099637. [PMID: 36741393 PMCID: PMC9893508 DOI: 10.3389/fimmu.2022.1099637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
In Drosophila, the endoplasmic reticulum-associated protein degradation (ERAD) is engaged in regulating pleiotropic biological processes, with regard to retinal degeneration, intestinal homeostasis, and organismal development. The extent to which it functions in controlling the fly innate immune defense, however, remains largely unknown. Here, we show that blockade of the ERAD in fat bodies antagonizes the Toll but not the IMD innate immune defense in Drosophila. Genetic approaches further suggest a functional role of Me31B in the ERAD-mediated fly innate immunity. Moreover, we provide evidence that silence of Xbp1 other than PERK or Atf6 partially rescues the immune defects by the dysregulated ERAD in fat bodies. Collectively, our study uncovers an essential function of the ERAD in mediating the Toll innate immune reaction in Drosophila.
Collapse
Affiliation(s)
- Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Lei Liu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Chao Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Tingting Han
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Yiheng Jin
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Kan She
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Yihua Xiao
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Akira Goto
- Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,*Correspondence: Qingshuang Cai, ; Shanming Ji,
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China,*Correspondence: Qingshuang Cai, ; Shanming Ji,
| |
Collapse
|
5
|
Wang J, Zhu Y, Zhang C, Duan R, Kong F, Zheng X, Hua Y. A conserved role of bam in maintaining metabolic homeostasis via regulating intestinal microbiota in Drosophila. PeerJ 2022; 10:e14145. [PMID: 36248714 PMCID: PMC9559046 DOI: 10.7717/peerj.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Previous studies have proven that bag-of-marbles (bam) plays a pivotal role in promoting early germ cell differentiation in Drosophila ovary. However, whether it functions in regulating the metabolic state of the host remains largely unknown. Methods We utilized GC-MS, qPCR, and some classical kits to examine various metabolic profiles and gut microbial composition in bam loss-of-function mutants and age-paired controls. We performed genetic manipulations to explore the tissue/organ-specific role of bam in regulating energy metabolism in Drosophila. The DSS-induced mouse colitis was generated to identify the role of Gm114, the mammalian homolog of bam, in modulating intestinal homeostasis. Results We show that loss of bam leads to an increased storage of energy in Drosophila. Silence of bam in intestines results in commensal microbial dysbiosis and metabolic dysfunction of the host. Moreover, recovery of bam expression in guts almost rescues the obese phenotype in bam loss-of-function mutants. Further examinations of mammalian Gm114 imply a similar biological function in regulating the intestinal homeostasis and energy storage with its Drosophila homolog bam. Conclusion Our studies uncover a novel biological function of bam/Gm114 in regulating the host lipid homeostasis.
Collapse
Affiliation(s)
- Jiale Wang
- Anhui Agricultural University, Hefei, China
| | | | - Chao Zhang
- Anhui Agricultural University, Hefei, China
| | | | | | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | | |
Collapse
|