1
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
2
|
Rubino G, Yörük E. Immunosenescence, immunotolerance and rejection: clinical aspects in solid organ transplantation. Transpl Immunol 2024; 86:102068. [PMID: 38844001 DOI: 10.1016/j.trim.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
As a consequence of increased lifespan and rising number of elderly individuals developing end-stage organ disease, the higher demand for organs along with a growing availability for organs from older donors pose new challenges for transplantation. During aging, dynamic adaptations in the functionality and structure of the biological systems occur. Consistently, immunosenescence (IS) accounts for polydysfunctions within the lymphocyte subsets, and the onset of a basal but persistent systemic inflammation characterized by elevated levels of pro-inflammatory mediators. There is an emerging consensus about a causative link between such hallmarks and increased susceptibility to morbidities and mortality, however the role of IS in solid organ transplantation (SOT) remains loosely addressed. Dissecting the immune-architecture of immunologically-privileged sites may prompt novel insights to extend allograft survival. A deeper comprehension of IS in SOT might unveil key standpoints for the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Graziella Rubino
- University Hospital Tübingen, Department of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; Institute for Transfusion Medicine, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany.
| | - Efdal Yörük
- Berit Klinik, Gastrointestinal Center, Florastrasse 1, 9403 Goldach, Switzerland; University Hospital Tübingen, Department of Ophthalmology, Elfriede-Alhorn-Straße 7, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab 2024; 35:793-808. [PMID: 38763781 DOI: 10.1016/j.tem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Stephan Forisch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
4
|
Bigliardi PL, Lo S, Bigliardi E, Dancik Y, Leblanc-Noblesse E, Bigliardi-Qi M. Delta opioid receptor expression correlates to skin ageing and melanin expression in Asian women. Exp Dermatol 2024; 33:e15096. [PMID: 38922774 DOI: 10.1111/exd.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
While the evidence for the implication of opioid receptors (OPr) in ageing is growing, there is, to our knowledge, no study focusing directly on changes in vivo cutaneous OPr expression with increasing age. We thus investigated OPr expression in 30 healthy female Asian volunteers in Southern China whose ages range from the early 20s to the early 60s. Excisional biopsies were taken from the sun-exposed extensor area of the lower arm and the photo-protected area of the upper inner arm. The thickness of the epidermal layers, melanin content, as well as expression of mu-opioid receptors (MOPr) and delta-opioid receptors (DOPr) were compared between different age ranges and photo-exposure status. Significant increased epidermal hypertrophy on the extensor surface was observed. There was significant reduction of DOPr in the epidermis with increasing age, independent of photo-ageing. The increase of melanin was significantly correlated with epidermal DOPr expression, not with MOPr expression. DOPr expression could thus serve as a marker for real biological ageing unaffected by chronic photo-exposure. Additionally, DOPr expression was inversely correlated with the deposition of melanin. Based on these results, we hypothesise that regulation of DOPr expression could be used to improve aged skin, including hyperpigmentation.
Collapse
Affiliation(s)
- Paul L Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sydney Lo
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Elena Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuri Dancik
- Experimental Dermatology, Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | | | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Subramaniam MD, Bae JS, Son J, Anggradita LD, Kim MK, Lee MY, Jang S, Choi K, Lee JC, Nam SM, Hwang Y. Floating electrode-dielectric barrier discharge-based plasma promotes skin regeneration in a full-thickness skin defect mouse model. Biomed Eng Lett 2024; 14:605-616. [PMID: 38645591 PMCID: PMC11026333 DOI: 10.1007/s13534-024-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 04/23/2024] Open
Abstract
Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-β1 (TGF-β1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-β1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Joon Suk Bae
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Jiwon Son
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Laurensia Danis Anggradita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Min-Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Min Yong Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Seokyoon Jang
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Kwangok Choi
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Justine C. Lee
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095 USA
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| |
Collapse
|
6
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Li H, Wang Z, Zhou F, Zhang G, Feng X, Xiong Y, Wu Y. Sustained activation of NLRP3 inflammasome contributes to delayed wound healing in aged mice. Int Immunopharmacol 2023; 116:109828. [PMID: 36774855 DOI: 10.1016/j.intimp.2023.109828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
The cutaneous wounds in the elderly heal poorly, resulting in medical and economic burdens posed by defect repairing. Age-related delayed wound healing is associated with persistent inflammation and insufficient ECM deposition. The NLRP3 inflammasome has been proven to be a critical regulator of age-related inflammatory diseases, as well as impaired wound healing. Here, we create a 6 mm full-thickness cutaneous wound on the back of young and aged mice. Compared with young mice, aged counterparts display a retardation in wound healing, accompanied by increased activation of NLRP3 inflammasome. The application of the NLRP3 inhibitor (MCC950) ameliorates wound healing in aged mice. MCC950 inhibits sustained inflammation and reduces pyroptotic cell death in fibroblasts by blocking the abnormal activation of the NLRP3 inflammasome. Our findings illuminate that the NLRP3 inflammasome is a previously unrecognized regulator of aged wound healing and may be a potential target for the therapeutic strategy of delayed wound healing with aging.
Collapse
Affiliation(s)
- Haiyun Li
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Feng
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|