1
|
Tian H, Liu Q, Yu X, Cao Y, Huang X. Damage-associated molecular patterns in viral infection: potential therapeutic targets. Crit Rev Microbiol 2024:1-18. [PMID: 39091137 DOI: 10.1080/1040841x.2024.2384885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Frequent viral infections leading to infectious disease outbreaks have become a significant global health concern. Fully elucidating the molecular mechanisms of the immune response against viral infections is crucial for epidemic prevention and control. The innate immune response, the host's primary defense against viral infection, plays a pivotal role and has become a breakthrough in research mechanisms. A component of the innate immune system, damage-associated molecular patterns (DAMPs) are involved in inducing inflammatory responses to viral infections. Numerous DAMPs are released from virally infected cells, activating downstream signaling pathways via internal and external receptors on immune cells. This activation triggers immune responses and helps regulate viral host invasion. This review examines the immune regulatory mechanisms of various DAMPs, such as the S100 protein family, high mobility group box 1 (HMGB1), and heat shock proteins, in various viral infections to provide a theoretical basis for designing novel antiviral drugs.
Collapse
Affiliation(s)
- Huizhen Tian
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanli Cao
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Guo Q, Li H, Zeng C, Lü Z, Jiang M. Associations of cold-inducible RNA-binding protein with bacterial load, proinflammatory cytokines and mortality from pneumonia. Clin Transl Sci 2024; 17:e13850. [PMID: 38807464 PMCID: PMC11134167 DOI: 10.1111/cts.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1β proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1β increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1β in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
- Department of Pulmonary and Critical Care MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hai‐yan Li
- Department of General MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Chao Zeng
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Zhong‐dong Lü
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Mei Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Wu Z, Liu X, Huang W, Chen J, Li S, Chao J, Xie J, Liu L, Yang Y, Wu X, Qiu H. CIRP increases Foxp3 + regulatory T cells and inhibits development of Th17 cells by enhancing TLR4-IL-2 signaling in the late phase of sepsis. Int Immunopharmacol 2024; 132:111924. [PMID: 38531201 DOI: 10.1016/j.intimp.2024.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND T helper (Th) cell imbalances have been associated with the pathophysiology of sepsis, including the Th1/Th2 and Th17/T regulatory cells (Treg) paradigms. Cold-inducible RNA-binding protein (CIRP), a novel damage-associated molecular pattern (DAMP) was reported that could induce T cell activation, and skew CD4+ T cells towards a Th1 profile. However, the effect and underlying mechanisms of CIRP on Th17/Treg differentiation in sepsis still remains unknown. METHODS A prospective exploratory study including patients with sepsis was conducted. Blood samples were collected from patients on days 0, 3 and 7 on admission. The serum CIRP and peripheral blood Treg/Th17 percentage was determined by ELISA and flow cytometry. CD4+ T cells from the spleen and lymph nodes of mice with experimental sepsis were collected after treatment with normal saline (NS), recombinant murine CIRP (rmCIRP) and C23 (an antagonist for CIRP-TLR4) at late stage of sepsis. RNA-seq was conducted to reveal the pivotal molecular mechanism of CIRP on Treg/Th17 differentiation. Naïve CD4+ T cell was isolated from the Tlr4 null and wildtype mice in the presence or absence rmCIRP and C23 to confirmed above findings. RESULTS A total of 19 patients with sepsis finally completed the study. Serum CIRP levels remained high in the majority of patients up to 1 week after admittance was closely associated with high Treg/Th17 ratio of peripheral blood and poor outcome. A univariate logistic analysis demonstrated that higher CIRP concentration at Day 7 is an independent risk factor for Treg/Th17 ratio increasing. CIRP promotes Treg development and suppresses Th17 differentiation was found both in vivo and in vitro. Pretreated with C23 not only alleviated the majority of negative effect of CIRP on Th17 differentiation, but also inhibited Treg differentiation, to some extent. Tlr4 deficiency could abolish almost all downstream effects of rmCIRP. Furthermore, IL-2 is proved a key downstream molecules of the effect CIRP, which also could amplify the activated CD4+ T lymphocytes. CONCLUSIONS Persistent high circulating CIRP level may lead to Treg/Th17 ratio elevated through TLR4 and subsequent active IL-2 signaling which contribute to immunosuppression during late phases of sepsis.
Collapse
Affiliation(s)
- Zongsheng Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Songli Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
5
|
Jin H, Aziz M, Murao A, Kobritz M, Shih AJ, Adelson RP, Brenner M, Wang P. Antigen-presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis. J Clin Invest 2023; 133:e164585. [PMID: 37463445 DOI: 10.1172/jci164585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a key mediator of severity and mortality in sepsis. We found that stimulation of mouse bone marrow-derived neutrophils (BMDNs) with eCIRP generated a distinct neutrophil subpopulation, characterized by cell surface markers of both antigen-presenting cells and aged neutrophils as well as expression of IL-12, which we named antigen-presenting aged neutrophils (APANs). The frequency of APANs was significantly increased in the blood, spleen, and lungs of WT mice subjected to cecal ligation and puncture-induced sepsis but not in CIRP-/- mice. Patients with sepsis had a significant increase in circulating APAN counts compared with healthy individuals. Compared with non-APAN-transfered mice, APAN-transferred septic mice had increased serum levels of injury and inflammatory markers, exacerbated acute lung injury (ALI), and worsened survival. APANs and CD4+ T cells colocalized in the spleen, suggesting an immune interaction between these cells. APANs cocultured with CD4+ T cells significantly induced the release of IFN-γ via IL-12. BMDNs stimulated with eCIRP and IFN-γ underwent hyper-NETosis. Stimulating human peripheral blood neutrophils with eCIRP also induced APANs, and stimulating human neutrophils with eCIRP and IFN-γ caused hyper-NETosis. Thus, eCIRP released during sepsis induced APANs to aggravate ALI and worsen the survival of septic animals via CD4+ T cell activation, Th1 polarization, and IFN-γ-mediated hyper-NETosis.
Collapse
Affiliation(s)
- Hui Jin
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Molly Kobritz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Andrew J Shih
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Robert P Adelson
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine and
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|