1
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
2
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
3
|
Thepmalee C, Jenkham P, Ramwarungkura B, Suwannasom N, Khoothiam K, Thephinlap C, Sawasdee N, Panya A, Yenchitsomanus PT. Enhancing cancer immunotherapy using cordycepin and Cordyceps militaris extract to sensitize cancer cells and modulate immune responses. Sci Rep 2024; 14:21907. [PMID: 39300166 DOI: 10.1038/s41598-024-72833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Integrating immunotherapy with natural compounds holds promise in enhancing the immune system's ability to eliminate cancer cells. Cordyceps militaris, a traditional Chinese medicine, emerges as a promising candidate in this regard. This study investigates the effects of cordycepin and C. militaris ethanolic extract (Cm-EE) on sensitizing cancer cells and regulating immune responses against breast cancer (BC) and hepatocellular carcinoma (HCC) cells. Cordycepin, pentostatin and adenosine were identified in Cm-EE. Cordycepin treatment decreased HLA-ABC-positive cells in pre-treated cancer cells, while Cm-EE increased NKG2D ligand and death receptor expression. Additionally, cordycepin enhanced NKG2D receptor and death ligand expression on CD3-negative effector immune cells, particularly on natural killer (NK) cells, while Cm-EE pre-treatment stimulated IL-2, IL-6, and IL-10 production. Co-culturing cancer cells with effector immune cells during cordycepin or Cm-EE incubation resulted in elevated cancer cell death. These findings highlight the potential of cordycepin and Cm-EE in improving the efficacy of cancer immunotherapy for BC and HCC.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Phanitaporn Jenkham
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Boonyanuch Ramwarungkura
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nittiya Suwannasom
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Krissana Khoothiam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chonthida Thephinlap
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Gu Q, Yin S, Tong X, Rui F, Zhu Y, Ma X, Huang R, Wu C, Li J. Current research insights into the role of CTLA-4 in hepatitis B virus (HBV) infection. J Viral Hepat 2024; 31:557-564. [PMID: 38771314 DOI: 10.1111/jvh.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Cheng J, Li J, Jiang X, Ma X, Li B, Zhai H, Luo X, Zhou Y, Wu J, Zhang Z, Chen S, Wang Y. CD74 facilitates immunotherapy response by shaping the tumor microenvironment of hepatocellular carcinoma. Mol Med 2024; 30:116. [PMID: 39118044 PMCID: PMC11308498 DOI: 10.1186/s10020-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND CD74 is ectopically expressed in many tumors and can regulate tumor immunity. However, there are many gaps in the study of the prognostic value of CD74 expression and immune infiltration in hepatocellular carcinoma (HCC). METHODS An online tumor database was searched to obtain data on gene/protein expression. Immune infiltration analysis was performed using the Tumor Immune Estimation Resource and Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer databases. Single-cell data were obtained from the Tissue-specific Gene Expression and Regulation, Single-cell Transcriptomes of Tumor Immune Microenvironment and Tumor Immune Single-cell Hub 2 databases. RESULTS CD74 was highly expressed in HCC patients. HCC patients with high CD74 expression who consumed alcohol or were negative for hepatitis virus had a better prognosis than patients with low CD74 expression. CD74 was mainly enriched in immune response regulation pathways. Both copy number variations in CD74 and CD74 expression patterns affected the infiltration levels of immune cells. Interestingly, CD74 regulated the differentiation of myeloid cells. CD74 in macrophages and dendritic cells (DCs) forms complex networks with malignant cells and hepatic progenitor cell (HPC)-like cells, respectively. High CD74 expression in HPC-like cells and malignant cells significantly decreased the fraction of C-type lectin domain family 9 A (CLEC9A)-cDC1+ DCs and IL-1B+ macrophages, respectively. Their crosstalk subsequently shaped the tumor microenvironment of HCC, possibly through the CD74-MIF axis. Importantly, patients with high CD74 expression presented higher immune scores and achieved good outcomes after receiving immunotherapy. CONCLUSION High CD74 expression is associated with the abundance of a variety of immune cell types, mediating interactions among tumor and immune cells and shaping the malignant behavior of HCC. In summary, CD74 may be a hallmark for determining the prognosis and immune cell infiltration levels of HCC patients.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Tumor Microenvironment/immunology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/etiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Immunotherapy/methods
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Prognosis
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor
- Computational Biology/methods
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Junyang Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xinjie Jiang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Bixuan Li
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Han Zhai
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Junhua Wu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China
| | - Zhiming Zhang
- Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, P.R. China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, P.R. China.
- Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
6
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
7
|
Yang C, Liu Y, Lv C, Xu M, Xu K, Shi J, Tan T, Zhou W, Lv D, Li Y, Xu J, Shao T. CanCellVar: A database for single-cell variants map in human cancer. Am J Hum Genet 2024; 111:1420-1430. [PMID: 38838674 PMCID: PMC11267512 DOI: 10.1016/j.ajhg.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Numerous variants, including both single-nucleotide variants (SNVs) in DNA and A>G RNA edits in mRNA as essential drivers of cellular proliferation and tumorigenesis, are commonly associated with cancer progression and growth. Thus, mining and summarizing single-cell variants will provide a refined and higher-resolution view of cancer and further contribute to precision medicine. Here, we established a database, CanCellVar, which aims to provide and visualize the comprehensive atlas of single-cell variants in tumor microenvironment. The current CanCellVar identified ∼3 million variants (∼1.4 million SNVs and ∼1.4 million A>G RNA edits) involved in 2,754,531 cells of 5 major cell types across 37 cancer types. CanCellVar provides the basic annotation information as well as cellular and molecular function properties of variants. In addition, the clinical relevance of variants can be obtained including tumor grade, treatment, metastasis, and others. Several flexible tools were also developed to aid retrieval and to analyze cell-cell interactions, gene expression, cell-development trajectories, regulation, and molecular structure affected by variants. Collectively, CanCellVar will serve as a valuable resource for investigating the functions and characteristics of single-cell variations and their roles in human tumor evolution and treatment.
Collapse
Affiliation(s)
- Changbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yujie Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Mengjia Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Tingting Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
8
|
Badhrinarayanan S, Cotter C, Zhu H, Lin YC, Kudo M, Li D. IMbrave152/SKYSCRAPER-14: a Phase III study of atezolizumab, bevacizumab and tiragolumab in advanced hepatocellular carcinoma. Future Oncol 2024; 20:2049-2057. [PMID: 38861301 PMCID: PMC11497967 DOI: 10.1080/14796694.2024.2355863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Atezolizumab plus bevacizumab is a standard of care, first-line therapy for advanced hepatocellular carcinoma (HCC). Myeloid and T regulatory cells are key immunosuppressive cell types within the hepatic tumor microenvironment associated with clinical resistance to atezolizumab and bevacizumab therapy for HCC and overall poor prognosis. Therapeutic targeting of TIGIT, which is highly expressed in these cells, with tiragolumab may overcome the immunosuppressive environment and improve clinical benefit, a hypothesis supported by positive efficacy signals in the Phase Ib/II MORPHEUS-Liver study. This paper describes the rationale and design of IMbrave152/SKYSCRAPER-14, a randomized, double-blind, placebo-controlled Phase III study comparing atezolizumab and bevacizumab with tiragolumab or placebo in patients with HCC and no prior systemic treatment.Clinical Trial Registration: NCT05904886 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Christopher Cotter
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Huaqi Zhu
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Ya-Chen Lin
- Clinical Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Masatoshi Kudo
- Department of Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daneng Li
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA USA
| |
Collapse
|
9
|
Wang L, Li S, Li X, Zhuo G, Zhang Q, Liu G, Pan Y. Single cell analysis unveils the commonality and heterogeneity between nasopharyngeal and oropharyngeal carcinoma. Neoplasia 2024; 50:100980. [PMID: 38382442 PMCID: PMC10891337 DOI: 10.1016/j.neo.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Nasopharyngeal carcinoma (NPC) and oropharyngeal carcinoma (OPC) are subtypes of head and neck cancer with different treatment effects due to the heterogeneity of tumor microenvironments. This study was to investigate the distinctive tumor microenvironments of NPC and OPC. Analyzing single-cell data from 10 cases of each subtype, we reveal significant differences in cellular composition, with NPC microenvironment dominated by T/NK and B cells, and OPC characterized by prevalent epithelial cells and fibroblasts. Dynamic transitions of CD8 T cells are observed in both tumor types, involving shifts from naivety to cytotoxicity, proliferation, and eventual exhaustion/exhausted states. Additionally, Tregs exhibit heightened proliferative abilities in later developmental stages, concomitant with exhaustion. These highly proliferative T cells and Tregs manifest elevated glycolysis and lactate metabolism activities. Furthermore, we explore intercellular communication between glycolytic malignant epithelial cells and these proliferative T cells. These findings offer comprehensive insights into the heterogeneity of tumor microenvironments and provide a solid foundation for future therapeutic strategies and targeted interventions.
Collapse
Affiliation(s)
- Liping Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Shuang Li
- Department of Otolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Xinran Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Guangzheng Zhuo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
10
|
Wang H, Tsung A, Mishra L, Huang H. Regulatory T cell: a double-edged sword from metabolic-dysfunction-associated steatohepatitis to hepatocellular carcinoma. EBioMedicine 2024; 101:105031. [PMID: 38401419 PMCID: PMC10904199 DOI: 10.1016/j.ebiom.2024.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming a leading cause of end-stage liver disease globally. Metabolic-dysfunction-associated steatohepatitis (MASH) represents a progressive inflammatory manifestation of MASLD. MASH underlies a versatile and dynamic inflammatory microenvironment, accompanied by aberrant metabolism and ongoing liver regeneration, establishing itself as a significant risk factor for hepatocellular carcinoma (HCC). The mechanisms underlying the escape and survival of malignant cells within the extensive inflammatory microenvironment of MASH remain elusive. Regulatory T cells (Tregs) play a crucial role in maintaining homeostasis and preventing excessive immune responses in the liver. Paradoxically, Tregs have been implicated in inhibiting tumour-promoting inflammation and facilitating the evasion of cancer cells. Recent studies have unveiled distinct behaviours of Tregs at different stages of MASLD, suggesting a dual role in the pathogenesis. In this review, we explore the fate of Tregs from MASLD to HCC, offering recent insights into potential targets for clinical intervention.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lopa Mishra
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
11
|
Liang Y, Zhong D, Yang Q, Tang Y, Qin Y, Su Y, Huang X, Shang J. Single-Cell RNA Sequencing Revealed That the Enrichment of TPI1 + Malignant Hepatocytes Was Linked to HCC Metastasis and Immunosuppressive Microenvironment. J Hepatocell Carcinoma 2024; 11:373-383. [PMID: 38410699 PMCID: PMC10896104 DOI: 10.2147/jhc.s453249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor metastasis is the leading cause of high mortality in hepatocellular carcinoma (HCC). The metastasis-related HCC microenvironment is characterized by high heterogeneity. Single-cell RNA sequencing (scRNA-seq) may aid in determining specific cell clusters involved in regulating the immune microenvironment of HCC. Methods The scRNA-seq data of 10 HCC samples were collected from the Gene Expression Omnibus (GEO) database GSE124395. Correlations between key gene expression and clinicopathological data were determined using public databases. HCC tissues and matched tumor-adjacent and normal tissue samples were obtained by surgical resection at Sichuan Cancer Hospital. Immune cell infiltration analysis was performed and verified by immunohistochemistry and immunofluorescent staining. Results Nine malignant hepatocyte clusters with different marker genes and biological functions were identified. C3_Hepatocyte-SERF2 and C6_Hepatocyte-IL13RA2 were mainly involved in the regulation of the immune microenvironment, which was also a significant pathway in regulating HCC metastasis. Key genes in malignant hepatocyte clusters that associated with HCC metastasis were further screened by LASSO regression analysis. TPI1, a key gene in C6_Hepatocyte-IL13RA2 and HCC metastasis, could participate in regulating the HCC immune microenvironment in The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases. Moreover, immunohistochemistry analysis demonstrated that TPI1 expression was positively correlated with HCC metastasis and poor prognosis, while negatively correlated with CD8+ T cell infiltration. The negative correlation between TPI1 expression and CD8+ T cell infiltration was further confirmed by immunofluorescence staining. Conclusion In summary, a cluster of TPI1+ malignant hepatocytes was associated with the suppression of CD8+ T cell infiltration and HCC metastasis, providing novel insights into potential biomarkers for immunotherapy in HCC.
Collapse
Affiliation(s)
- Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Deyuan Zhong
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yuan Tang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yingying Qin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, People's Republic of China
| | - Yuhao Su
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Liu Y, Lin Y, Liao S, Feng W, Liu J, Luo X, Wei Q, Tang H. Single-cell RNA sequencing reveals the immune microenvironment landscape of osteosarcoma before and after chemotherapy. Heliyon 2024; 10:e23601. [PMID: 38332885 PMCID: PMC10851305 DOI: 10.1016/j.heliyon.2023.e23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024] Open
Abstract
Chemotherapy, a primary treatment for osteosarcoma (OS), has limited knowledge regarding its impact on tumor immune microenvironment (TIME). Here, tissues from 6 chemotherapy-naive OS patients underwent single-cell RNA sequencing (scRNA-seq) and were analyzed alongside public dataset (GSE152048) containing 7 post-chemotherapy OS tissues. CD45+ (PTPRC+) cells were used for cell clustering and annotation. Changes in immune cell composition pre- and post-chemotherapy were characterized. Totally, 28,636 high-quality CD45+ (PTPRC+) cells were extracted. Following chemotherapy, the proportions of regulatory T cells (Tregs) and activated CD8 T cells decreased, while CD8 effector T cells increased. GO analysis indicated that differentially expressed genes (DEGs) in T cells were associated with cell activation, adaptive immune response, and immune response to tumor cells. Furthermore, the proportions of plasma cells increased, while naive B cells decreased. B cell surface receptors expression was upregulated, and GO analysis revealed DEGs of B cells were mainly enriched in B cell-mediated immunity and B cell activation. Moreover, M2 polarization of macrophages was suppressed post-chemotherapy. Overall, this study elucidates chemotherapy remodels the OS TIME landscape, triggering immune heterogeneity and enhancing anti-tumor properties.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yunhua Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Luo
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Zhu J, Wang J, Liu H, Lei T, Yang J, Lan S, Jian H, Fang H, Zhang Y, Ren K, Zhong F. Crosstalk of cuproptosis-related prognostic signature and competing endogenous RNAs regulation in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:13901-13919. [PMID: 38078880 PMCID: PMC10756090 DOI: 10.18632/aging.205273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Cuproptosis is a new type of programmed cell death involved in the regulation of neuroendocrine tumors, immune microenvironment, and substance metabolism. However, the role of cuproptosis-related genes (CRGs) in Hepatocellular carcinoma (HCC) remains unclear. METHOD Through multiple bioinformatics analysis, we constructed a prognostic gene model and competing endogenous RNA (ceRNA) network. The correlation between CRGs and prognosis, immune infiltration, immune checkpoints, microsatellite instability (MSI) and tumor mutational burden (TMB) was analyzed by Kaplan-Meier curve, univariate Cox, multivariate regression, and Spearman's analysis in HCC patients. Besides, the qRT-PCR and immunohistochemistry assays were used to determine prognostic CRGs mRNA and protein expression in HCC. RESULTS We established a novel 3-gene signature related to CRGs for evaluating the prognosis of HCC patients. HCC patients with high risk scores had a poor prognosis with an area under the curve of 0.737, 0.646, and 0.634 on 1-year, 3-year, and 5-year receiver operating characteristic curves. Significant correlation was observed between prognostic CRGs and immune infiltration, immune checkpoints, MSI and TMB. We also developed five ceRNA networks to regulate the occurrence and progression of HCC. CDKN2A, DLAT, and PDHA1 protein expression was up-regulated in HCC versus normal tissues. Besides, the mRNA expression levels of CDKN2A, DLAT, GLS, and PDHA1 were elevated in the HCC cell lines compared to the normal liver cell lines. CONCLUSIONS This novel prognostic CRGs signature could be accurately predict the prognosis of patients with HCC. The ceRNA regulatory network might be potential prognostic biomarkers and therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Oncology, Guoyang County People’s Hospital, Guoyang Branch of Anhui Provincial Hospital, Guoyang 233607, Anhui, China
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Jingyan Wang
- Department of Anesthesia, Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang, China
| | - Hong Liu
- Department of Cardiovascular Medicine, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
| | - Tong Lei
- The First Affiliated Hospital, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiankang Yang
- Department of Cardiac Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| | - Sheng Lan
- The Second Clinical College of Guangzhou Medical University, Guangzhou 510030, Guangdong, China
| | - Haokun Jian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hanlu Fang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yu Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Kuiwu Ren
- Department of Hepatobiliary Surgery, Fuyang People’s Hospital, Fuyang 236000, Anhui, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, China
| |
Collapse
|
15
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2023:01515467-990000000-00480. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Zhou S, Zhao Z, Zhong H, Ren Z, Li Y, Wang H, Qiu Y. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14:77. [PMID: 37217620 DOI: 10.1007/s12672-023-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
MDSCs are immature myeloid immune cells, which accumulate in models of liver cancer to reduce effector immune cell activity, contribute to immune escape and treatment resistance. The accumulation of MDSCs suppresses the role of CTL and the killing effects of NK cells, induces the accumulation of Treg cells, and blocks the antigen presentation of DCs, thus promoting the progression of liver cancer. Recently, immunotherapy has emerged a valuable approach following chemoradiotherapy in the therapy of advanced liver cancer. A considerable increasing of researches had proved that targeting MDSCs has become one of the therapeutic targets to enhance tumor immunity. In preclinical study models, targeting MDSCs have shown encouraging results in both alone and in combination administration. In this paper, we elaborated immune microenvironment of the liver, function and regulatory mechanisms of MDSCs, and therapeutic approaches to target MDSCs. We also expect these strategies to supply new views for future immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hao Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Zehao Ren
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuye Li
- Binhai New Area Hospital of TCM, Tianjin, 300451, China.
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
17
|
Devan AR, Nair B, Aryan MK, Liju VB, Koshy JJ, Mathew B, Valsan A, Kim H, Nath LR. Decoding Immune Signature to Detect the Risk for Early-Stage HCC Recurrence. Cancers (Basel) 2023; 15:2729. [PMID: 37345066 DOI: 10.3390/cancers15102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is often recognized as an inflammation-linked cancer, which possesses an immunosuppressive tumor microenvironment. Curative treatments such as surgical resection, liver transplantation, and percutaneous ablation are mainly applicable in the early stage and demonstrate significant improvement of survival rate in most patients. However, 70-80% of patients report HCC recurrence within 5 years of curative treatment, representing an important clinical issue. However, there is no effective recurrence marker after surgical and locoregional therapies, thus, tumor size, number, and histological features such as cancer cell differentiation are often considered as risk factors for HCC recurrence. Host immunity plays a critical role in regulating carcinogenesis, and the immune microenvironment characterized by its composition, functional status, and density undergoes significant alterations in each stage of cancer progression. Recent studies reported that analysis of immune contexture could yield valuable information regarding the treatment response, prognosis and recurrence. This review emphasizes the prognostic value of tumors associated with immune factors in HCC recurrence after curative treatment. In particular, we review the immune landscape and immunological factors contributing to early-stage HCC recurrence, and discuss the immunotherapeutic interventions to prevent tumor recurrence following curative treatments.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | | | - Vijayastelar B Liju
- The Shraga Segal Department of Microbiology-Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Joel Joy Koshy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Arun Valsan
- Department of Gastroenterology and Epatology, Amrita Institute of Medical Science, Kochi 682041, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
18
|
Milardi G, Lleo A. Tumor-Infiltrating B Lymphocytes: Promising Immunotherapeutic Targets for Primary Liver Cancer Treatment. Cancers (Basel) 2023; 15:2182. [PMID: 37046842 PMCID: PMC10093314 DOI: 10.3390/cancers15072182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the fourth most lethal primary cancers worldwide. Therefore, there is an urgent need for therapeutic strategies, including immune cell targeting therapies. The heterogeneity of liver cancer is partially explained by the characteristics of the tumor microenvironment (TME), where adaptive and innate immune system cells are the main components. Pioneering studies of primary liver cancers revealed that tumor-infiltrating immune cells and their dynamic interaction with cancer cells significantly impacted carcinogenesis, playing an important role in cancer immune evasion and responses to immunotherapy treatment. In particular, B cells may play a prominent role and have a controversial function in the TME. In this work, we highlight the effect of B lymphocytes as tumor infiltrates in relation to primary liver cancers and their potential prognostic value. We also present the key pathways underlying B-cell interactions within the TME, as well as the way that a comprehensive characterization of B-cell biology can be exploited to develop novel immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Milardi
- Hepatobiliary Immunopathology Labaratory, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
19
|
Eichberger J, Spoerl S, Spanier G, Erber R, Taxis J, Schuderer J, Ludwig N, Fiedler M, Nieberle F, Ettl T, Geppert CI, Reichert TE, Spoerl S. TIGIT Expression on Intratumoral Lymphocytes Correlates with Improved Prognosis in Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:biomedicines10123236. [PMID: 36551992 PMCID: PMC9775507 DOI: 10.3390/biomedicines10123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: T-cell immunoglobulin and ITIM domain (TIGIT) is a potential immunotherapeutic target in a variety of malignant entities, and antibody-based treatments are currently under investigation in clinical trials. While promising results were observed in patients with lung cancer, the role of TIGIT in oral squamous cell carcinoma (OSCC) as a biomarker as well as a therapeutic target remains elusive. Therefore, we evaluated the role of TIGIT as a prognostic factor in OSCC. (2) Methods: Here, we describe the results of a retrospective tissue microarray (TMA) OSCC cohort. Using immunohistochemistry, TIGIT expression was correlated with overall and recurrence-free survival (OAS and RFS, respectively). Additionally, in silico analysis was performed based on the TCGA Head and Neck Squamous Cell Carcinoma (HNSCC) cohort in order to correlate patients' survival with TIGIT and CD274 (encoding for PD-L1) gene expression levels. (3) Results: Database analysis revealed a beneficial outcome in OAS for tumor patients with high intraepithelial CD3-TIGIT-expression (n = 327). Hereby, OAS was 53.9 months vs. 30.1 months for patients with lower TIGIT gene expression levels (p = 0.033). In our retrospective OSCC-TMA cohort, elevated TIGIT levels on CD3+ cells correlated significantly with improved OAS (p = 0.025) as well as distant RFS (p = 0.026). (4) Conclusions: This study introduces TIGIT as a novel prognostic factor in OSCC, indicating the improved outcome of OSCC patients relative to their increased TIGIT expression. TIGIT might provide therapeutic implications for future immunotherapy in advanced-stage OSCC patients.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Silvia Spoerl
- Department of Internal Medicine 5—Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91051 Erlangen, Germany
| | - Juergen Taxis
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Johannes Schuderer
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils Ludwig
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Fiedler
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Felix Nieberle
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Ettl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Carol I. Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91051 Erlangen, Germany
| | - Torsten E. Reichert
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Steffen Spoerl
- Department of Cranio-Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-6340; Fax: +49-941-944-6342
| |
Collapse
|
20
|
Zhao S, Zhou M, Wang P, Yang J, Zhang D, Yin F, Song P. Sorafenib, Lenvatinib, or Lenvatinib Combining PD-1 Inhibitors Plus TACE in Unresectable Hepatocellular Carcinoma: A Retrospective Analysis. Technol Cancer Res Treat 2022; 21:15330338221133640. [PMID: 36259214 PMCID: PMC9583225 DOI: 10.1177/15330338221133640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction: This retrospective study aimed to compare the efficacy and safety of transarterial chemoembolization plus lenvatinib and programmed death 1 (PD-1) inhibitors versus transarterial chemoembolization plus lenvatinib or sorafenib in patients with unresectable hepatocellular carcinoma. Methods: Consecutive patients with unresectable hepatocellular carcinoma who received transarterial chemoembolization plus lenvatinib and PD-1 inhibitors, lenvatinib, or sorafenib were retrospectively identified in our institution between January 2018 and August 2020. The primary endpoint was overall survival. Results: A total of 84 patients were included in this analysis. The median overall survival was significantly improved in the transarterial chemoembolization plus lenvatinib and PD-1 inhibitor group compared with the transarterial chemoembolization plus sorafenib group (26.7 months [95% confidence interval 25.2-31.6] vs 14.4 months [95% confidence interval 9.5-18.9]; hazard ratio 0.39 [95% confidence interval 0.17-0.72]; P = .007) or the transarterial chemoembolization plus lenvatinib group (26.7 months [95% confidence interval 25.2-31.6] vs 17.9 [95% confidence interval 13.4-22.2] months; hazard ratio 0.45 [95% confidence interval 0.17-0.87]; P = .031). Transarterial chemoembolization plus lenvatinib and PD-1 inhibitor also significantly prolonged median progression-free survival compared with transarterial chemoembolization plus sorafenib group (8.2 months [95% confidence interval 3.3-13.0] vs 6.0 months [95% confidence interval 4.2-7.8]; hazard ratio 0.47 [95% confidence interval 0.24-0.74]; P = .005) or the transarterial chemoembolization plus lenvatinib group (8.2 months [95% confidence interval 3.3-13.0] vs 6.6 [95% confidence interval 4.3-7.9] months; hazard ratio 0.58 [95% confidence interval 0.31-0.96]; P = .047). No significant difference was seen between groups in the incidence of an adverse event or grade 3 or higher adverse event. Conclusion: Transarterial chemoembolization plus lenvatinib, and PD-1 inhibitor was associated with better survival benefits and acceptable toxicities, which may provide an additional therapeutic option for unresectable hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shu Zhao
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China
| | - Minhang Zhou
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China
| | - Peng Wang
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China
| | - Jing Yang
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China
| | - Dong Zhang
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China,Dong Zhang, Department of Medical Oncology,
The Second Medical Center and National Clinical Research Center for Geriatric
Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Fan Yin
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China,Fan Yin, Department of Medical Oncology,
The Second Medical Center and National Clinical Research Center for Geriatric
Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Peng Song
- The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China,Peng Song, Department of Medical Oncology,
The Second Medical Center and National Clinical Research Center for Geriatric
Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|