1
|
Kim WD, Sin DD. Granzyme B May Act as an Effector Molecule to Control the Inflammatory Process in COPD. COPD 2024; 21:1-11. [PMID: 38314671 DOI: 10.1080/15412555.2023.2299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by smoking, but only a small proportion of smokers have disease severe enough to develop COPD. COPD is not always progressive. The question then arises as to what explains the different trajectories of COPD. The role of autoimmunity and regulatory T (Treg) cells in the pathogenesis of COPD is increasingly being recognized. Nine published studies on Treg cells in the lung tissue or bronchoalveolar lavage fluid have shown that smokers with COPD have fewer Treg cells than smokers without COPD or nonsmokers. Three studies showed a positive correlation between Treg cell count and FEV1%, suggesting an important role for Treg cells in COPD progression. Treg cells can regulate immunological responses via the granzyme B (GzmB) pathway. Immunohistochemical staining for GzmB in surgically resected lungs with centrilobular emphysema showed that the relationship between the amount of GzmB+ cells and FEV1% was comparable to that between Treg cell count and FEV1% in the COPD lung, suggesting that GzmB could be a functional marker for Treg cells. The volume fraction of GzmB+ cells in the small airways, the number of alveolar GzmB+ cells, and GzmB expression measured by enzyme-linked immunosorbent assay in the lung tissue of smokers were significantly correlated with FEV1%. These results suggest that the GzmB content in lung tissue may determine the progression of COPD by acting as an effector molecule to control inflammatory process. Interventions to augment GzmB-producing immunosuppressive cells in the early stages of COPD could help prevent or delay COPD progression.
Collapse
Affiliation(s)
- Won-Dong Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Don D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Iamsawat S, Yu R, Kim S, Dvorina N, Qiu K, Choi J, Baldwin WM, Min B. Single-Cell Analysis Uncovers Striking Cellular Heterogeneity of Lung-Infiltrating Regulatory T Cells during Eosinophilic versus Neutrophilic Allergic Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1867-1876. [PMID: 38647384 PMCID: PMC11147735 DOI: 10.4049/jimmunol.2300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation. Emerging evidence suggests that Tregs infiltrating inflamed tissues exhibit distinct phenotypes dependent on the specific tissue sites and can display heterogeneity and tissue residency. Whether diverse allergic airway inflammatory responses influence infiltrating Treg heterogeneity or Treg lung residency has not been explored. We employed an unbiased single-cell RNA sequencing approach to investigate lung-infiltrating Tregs in models of eosinophilic and neutrophilic airway inflammation. We found that lung-infiltrating Tregs are highly heterogeneous, and that Tregs displaying lung-resident phenotypes are significantly different depending on the types of inflammation. Treg expression of ST2, a receptor for alarmin IL-33, was predominantly associated with eosinophilic inflammation and tissue residency. Nevertheless, Treg-specific ST2 deficiency did not affect the development of eosinophilic allergic inflammation or the generation of lung-resident Tregs. These results uncover a stark heterogeneity among Tregs infiltrating the lungs during allergic airway inflammation. The results indicate that varying types of inflammation may give rise to phenotypically distinct lung-resident Tregs, underscoring a (to our knowledge) novel mechanism by which inflammatory cues may shape the composition of infiltrating Tregs, allowing them to regulate inflammatory responses through tissue-adapted mechanisms.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Wu J, Zhang X, Lin S, Wei Q, Lin Z, Jin O, Gu J. Alterations in peripheral T- and B-cell subsets in patients with systemic sclerosis. Int J Rheum Dis 2024; 27:e15145. [PMID: 38661314 DOI: 10.1111/1756-185x.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To determine the alteration of peripheral T and B cell subsets in patients with systemic sclerosis (SSc) and to evaluate their correlation with the progression of SSc. METHODS We recruited 47 SSc patients and 45 healthy controls (HCs) in this study. Demographic and clinical data were then collected. Flow cytometry was used to detect the proportions of 44 different T and B cell subsets in circulating blood. RESULTS The proportion of total B cells (p = .043) decreased in SSc patients, together with similar frequencies of total T cells, CD4+ T cells, and CD8+ T cells in both groups. Several subsets of T and B cells differed significantly between these two groups. Follicular helper T cells-1 (Tfh1) (p < .001), helper T cells-1 (Th1) (p = .001), regulatory T cells (Treg) (p = .004), effector memory CD8+ T cells (p = .041), and cytotoxic T cells-17 (Tc17) (p = .01) were decreased in SSc patients. Follicular helper T cells-2 (Tfh2) (p = .001) and, helper T cells-2 (Th2) (p = .001) levels increased in the SSc group. Regulatory B cells (Breg) (p = .015) were lower in the SSc group, together with marginal zone (MZ) B cells (p < .001), memory B cells (p = .001), and non-switched B cells (p = .005). The modified Rodnan skin score (mRSS) correlated with helper T cells-17 (Th17) (r = -.410, p = .004), Tfh1 (r = -.321, p = .028), peripheral helper T cells (Tph) (r = -.364, p = .012) and plasma cells (r = -.312, p = .033). CONCLUSIONS The alterations in T and B cells implied immune dysfunction, which may play an essential role in systemic sclerosis.
Collapse
Affiliation(s)
- Jialing Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xi Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shen Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ou Jin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Zhang M, Shi X, Zhao J, Guo W, Zhou J. Recruitment of myeloid‑derived suppressor cells and regulatory T‑cells is associated with the occurrence of acute myocardial infarction. Biomed Rep 2023; 19:55. [PMID: 37560314 PMCID: PMC10407468 DOI: 10.3892/br.2023.1637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/10/2023] [Indexed: 08/11/2023] Open
Abstract
The roles of myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs) in acute myocardial infarction (AMI) remain elusive. The present study aimed to analyze the proportions of the granulocytic and monocytic populations of MDSCs (G-MDSCs and M-MDSCs, respectively), and Tregs in the peripheral blood mononuclear cells (PBMCs) of patients with AMI. The present study recruited 34 patients with AMI and 37 healthy controls without clinical signs of myocardial ischemia. PBMCs were isolated from the peripheral blood samples of patients with AMI within 24 h following admission to the hospital and from those of the healthy controls during a physical examination. Two subsets of MDSCs, G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DRlow) and M-MDSCs (CD14+CD15-CD11b+HLA-DRlow), and Tregs (CD3+CD4+CD25highCD127low T-cells) in the PBMCs derived from the patients with AMI and healthy controls were analyzed using flow cytometry. The effects of MDSCs derived from patients with AMI on naïve CD4+ T-cells were examined in the co-culture system. The results revealed that the proportions of G-MDSCs and M-MDSCs were higher in the peripheral blood of patients with AMI than in that of the healthy controls. The patients with AMI had significantly higher numbers of programmed death-ligand (PD-L)1- and PD-L2-positive G-MDSCs and M-MDSCs compared with the healthy controls (P<0.05). The MDSCs could acquire a granulocytic phenotype following AMI, and the G-MDSCs and M-MDSCs would be more likely to express PD-L2 and PD-L1, respectively. The ratios of Tregs to CD4+ T-cells and PD-1+ Tregs in the peripheral blood of patients with AMI were significantly higher than those in the healthy controls (P<0.05). The results of flow cytometry demonstrated an increase in the numbers of inducible Tregs in the co-culture system with the G-MDSCs derived from patients with AMI compared with the G-MDSCs derived from the healthy controls (P<0.01). On the whole, the findings presented herein demonstrate the accumulation of MDSCs, and the upregulation of PD-L1 and PD-L2 expression on the surface of MDSCs in patients with AMI. MDSCs can induce the expansion of Tregs by binding PD-1 on the surface of Tregs, thus playing a crucial role in AMI.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Xiaohu Shi
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jingquan Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Wenjia Guo
- Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jie Zhou
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
6
|
Braband KL, Kaufmann T, Floess S, Zou M, Huehn J, Delacher M. Stepwise acquisition of unique epigenetic signatures during differentiation of tissue Treg cells. Front Immunol 2022; 13:1082055. [PMID: 36569861 PMCID: PMC9772052 DOI: 10.3389/fimmu.2022.1082055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events.
Collapse
Affiliation(s)
- Kathrin L. Braband
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Tamara Kaufmann
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mangge Zou
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany,Hannover Medical School, Hannover, Germany
| | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany,*Correspondence: Michael Delacher,
| |
Collapse
|
7
|
Cytokine and metabolic regulation of adipose tissue Tregs. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00013. [PMID: 36337732 PMCID: PMC9624380 DOI: 10.1097/in9.0000000000000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 01/24/2023]
Abstract
Since their discovery over a decade ago, much has been learned regarding the importance and function of visceral adipose tissue (VAT)-resident regulatory T cells (Tregs). VAT Tregs play a critical role in controlling VAT inflammation and alleviating metabolic disease. However, this population is disrupted in obesity which exacerbates VAT inflammation and metabolic abnormalities. Therefore, understanding the factors governing the accumulation and maintenance of VAT Tregs, both at steady state and under disease conditions, is crucial for identifying the mechanisms underlying obesity-associated metabolic disease and developing novel therapies. Expansion and maintenance of the VAT Treg compartment is strongly influenced by factors in the local tissue microenvironment, including cytokines, T-cell receptor ligands, hormones, and various metabolites. This mini-review will primarily focus on recent advances in our understandings regarding the regulation of mouse epididymal VAT (eVAT) Tregs, which are the most thoroughly characterized VAT Treg population, by tissue microenvironmental factors and cellular metabolic processes. We will also briefly discuss the limited knowledge available regarding the regulation of mouse ovarian VAT (oVAT) Tregs and human omental VAT Tregs, highlight some lingering questions, and provide a prospective view on where the field is heading.
Collapse
|