1
|
Morales-Martínez M, Andón-García D, Patiño-Santiago KA, Parga-Ortega JM, Hernández-Hernández A, Aquino-Jarquin G, Patino-Lopez G. Identification of potential new T cell activation molecules: a Bioinformatic Approach. Sci Rep 2024; 14:22219. [PMID: 39333573 PMCID: PMC11436975 DOI: 10.1038/s41598-024-73003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
T-cell activation is central for the initiation of T cell mediated adaptive immune response and is the result of the close communication between the Antigen Presenting Cell (APC) and the T lymphocyte. Although T-cell activation is currently well understood, and many intracellular pathways are well characterized, nevertheless new players are constantly identified, and this complements the known protein interactome. In this work we aimed to identify new proteins involved in T cell activation. We reviewed and analyzed results of microarray gene expression datasets reported in the public database GEO-NCBI. Using data from GSE136625, GSE50971, GSE13887, GSE11989 and GSE902 we performed different comparisons using R and other bioinformatic tools including GEO2R and we report here upregulated genes that have no previous reports in immune related functions and with potential participation upon T-cell activation. Our results indicate that RND3, SYT10, IgSF6 and PIN1 are potential new T-cell activation molecules.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - David Andón-García
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | | | | | | | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - Genaro Patino-Lopez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico.
| |
Collapse
|
2
|
Li Z, Liu G, Yang X, Shu M, Jin W, Tong Y, Liu X, Wang Y, Yuan J, Yang Y. An atlas of cell-type-specific interactome networks across 44 human tumor types. Genome Med 2024; 16:30. [PMID: 38347596 PMCID: PMC10860273 DOI: 10.1186/s13073-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors. METHODS We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions. RESULTS We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes. CONCLUSIONS This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.
Collapse
Affiliation(s)
- Zekun Li
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Gerui Liu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxiao Yang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Shu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Jin
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Tong
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaochuan Liu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yuting Wang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yang Yang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Jiao Z, Zhang J. Interplay between inflammasomes and PD-1/PD-L1 and their implications in cancer immunotherapy. Carcinogenesis 2023; 44:795-808. [PMID: 37796835 DOI: 10.1093/carcin/bgad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The inflammasomes play crucial roles in inflammation and cancer development, while the PD-1/PD-L1 pathway is critical for immune suppression in the tumor microenvironment (TME). Recent research indicates a reciprocal regulatory relationship between inflammasomes and PD-1/PD-L1 signaling in cancer development and PD-1 blockade treatment. By activating in diverse cells in tumor tissues, inflammasome upregulates PD-L1 level in the TME. Moreover, the regulation of PD-1/PD-L1 activity by inflammasome activation involves natural killer cells, tumor-associated macrophages and myeloid-derived suppressor cells. Conversely, PD-1 blockade can activate the inflammasome, potentially influencing treatment outcomes. The interplay between inflammasomes and PD-1/PD-L1 has profound and intricate effects on cancer development and treatment. In this review, we discuss the crosstalk between inflammasomes and PD-1/PD-L1 in cancers, exploring their implications for tumorigenesis, metastasis and immune checkpoint inhibitor (ICI) resistance. The combined therapeutic strategies targeting both inflammasomes and checkpoint molecules hold promising potential as treatments for cancer.
Collapse
Affiliation(s)
- Zhongyu Jiao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
4
|
Tojjari A, Saeed A, Sadeghipour A, Kurzrock R, Cavalcante L. Overcoming Immune Checkpoint Therapy Resistance with SHP2 Inhibition in Cancer and Immune Cells: A Review of the Literature and Novel Combinatorial Approaches. Cancers (Basel) 2023; 15:5384. [PMID: 38001644 PMCID: PMC10670368 DOI: 10.3390/cancers15225384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
SHP2 (Src Homology 2 Domain-Containing Phosphatase 2) is a protein tyrosine phosphatase widely expressed in various cell types. SHP2 plays a crucial role in different cellular processes, such as cell proliferation, differentiation, and survival. Aberrant activation of SHP2 has been implicated in multiple human cancers and is considered a promising therapeutic target for treating these malignancies. The PTPN11 gene and functions encode SHP2 as a critical signal transduction regulator that interacts with key signaling molecules in both the RAS/ERK and PD-1/PD-L1 pathways; SHP2 is also implicated in T-cell signaling. SHP2 may be inhibited by molecules that cause allosteric (bind to sites other than the active site and attenuate activation) or orthosteric (bind to the active site and stop activation) inhibition or via potent SHP2 degraders. These inhibitors have anti-proliferative effects in cancer cells and suppress tumor growth in preclinical models. In addition, several SHP2 inhibitors are currently in clinical trials for cancer treatment. This review aims to provide an overview of the current research on SHP2 inhibitors, including their mechanism of action, structure-activity relationships, and clinical development, focusing on immune modulation effects and novel therapeutic strategies in the immune-oncology field.
Collapse
Affiliation(s)
- Alireza Tojjari
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran P.O. Box 14115-175, Iran
| | - Razelle Kurzrock
- Department of Medicine, Genome Sciences and Precision Medicine Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | | |
Collapse
|
5
|
Liu X, Shao P, Wang Y, Chen Y, Cui S. Anti-inflammatory mechanism of the optimized active ingredients of Sargentodoxa cuneata and Patrinia villosa. Int Immunopharmacol 2023; 120:110337. [PMID: 37244114 DOI: 10.1016/j.intimp.2023.110337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Pelvic inflammatory disease (PID) is a common gynecological infection. The combined use of Sargentodoxa cuneata (da xue teng) and Patrinia villosa (bai jiang cao) has been shown to inhibit PID progression. The active components of S. cuneata (emodin, Emo) and P. villosa (acacetin, Aca; oleanolic acid, OA; sinoacutine, Sin) have been identified but the mode of action of this combination of compounds against PID has not been clarified. Therefore, this study aims to investigate the mechanism of these active components against PID through network pharmacological, molecular docking and experimental validation. The results showed the optimal combination of components was 40 µM Emo + 40 µM OA, 40 µM Emo + 40 µM Aca, and 40 µM Emo + 150 µM Sin by cell proliferation and NO release. The potential key targets of this combination in the treatment of PID include SRC, GRB2, PIK3R1, PIK3CA, PTPN11, and SOS1, which act on signaling pathways such as EGFR, PI3K/Akt, TNF, and IL-17. Emo, Aca, OA, and their optimal combination inhibited the expression of IL-6, TNF-α, MCP-1, IL-12p70, IFN-γ, and the M1 phenotype markers CD11c and CD16/32, and promoted the expression of the M2 phenotype markers CD206 and arginase 1 (Arg1). Western blotting confirmed that Emo, Aca, OA, and their optimal combination significantly inhibited the expression of glucose metabolism-related proteins PKM2, PD, HK I, and HK II. This study proved the advantage of combination use of active components from S. cuneata and P. villosa, and clarified that they exert the anti-inflammatory effect by regulation of M1/M2 phenotype transition and regulation of glucose metabolism. The results provide a theoretical basis for the clinical treatment of PID.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Puwei Shao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Ying Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225000, China; Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Xu P, Yang Z, Du S, Hong Z, Zhong S. Intestinal microbiota analysis and network pharmacology reveal the mechanism by which Lianhua Qingwen capsule improves the immune function of mice infected with influenza A virus. Front Microbiol 2022; 13:1035941. [PMID: 36504796 PMCID: PMC9732014 DOI: 10.3389/fmicb.2022.1035941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Lianhua Qingwen capsule (LHQW) can attenuate lung injury caused by influenza virus infection. However, it is unclear whether the intestinal microbiota plays a role in LHQW activity in ameliorating viral infectious pneumonia. This study aimed to investigate the role of intestinal microbiota in LHQW activity in ameliorating viral infectious pneumonia and its possible mechanisms. Research design and methods A mouse model of influenza A viral pneumonia was established by intranasal administration in BALB/c mice. Detection of influenza virus in the lungs, pathological examination of the lungs and small intestine, and biochemical detection of inflammatory indices were performed. The effects of LHQW on intestinal microbiota were evaluated by 16S rRNA gene sequencing. The key components and targets of LHQW were screened via network pharmacology and verified through molecular docking, molecular dynamics simulation, and free binding energy calculations. Results Body weight decreased, inflammatory factor levels were disturbed, and the lung and intestinal mucosal barriers were significantly injured in the infected group. The alpha diversity of the intestinal microbiota decreased, and the abundance of Bacteroidetes, Muribaculaceae_unclassified, and Streptococcus decreased significantly. LHQW treatment reduced the viral load in the lungs, rescued body weight and survival, alleviated lung and intestinal mucosal barrier injury, reversed the reduction in the intestinal microbiota alpha diversity, and significantly increased the abundance of Bacteroidetes and Muribaculaceae. Network pharmacological analysis showed that six active herbal medicinal compounds from LHQW could regulate the intestinal microbiota and inhibit the immune-inflammatory response through the Toll-like receptor (TLR) and nuclear factor-κB (NF-κB) signalling pathways in the lungs. Conclusion These results suggest that LHQW is effective for treating influenza A virus infectious pneumonia, and the mechanism is associated with the regulation of the TLR4/NF-κB signalling pathway in the lungs by restoring intestinal microbiota and repairing the intestinal wall.
Collapse
Affiliation(s)
- Ping Xu
- Wannan Medical College, Wuhu, China,Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Yang
- Wannan Medical College, Wuhu, China
| | | | - Zongyuan Hong
- Wannan Medical College, Wuhu, China,*Correspondence: Zongyuan Hong,
| | - Shuzhi Zhong
- Wannan Medical College, Wuhu, China,Shuzhi Zhong,
| |
Collapse
|