1
|
Zaninoni A, Fattizzo B, Pettine L, Vercellati C, Marcello AP, Barcellini W. Cytokine polymorphisms in patients with autoimmune hemolytic anemia. Front Immunol 2023; 14:1221582. [PMID: 38022547 PMCID: PMC10667680 DOI: 10.3389/fimmu.2023.1221582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is due to autoantibodies with or without complement activation and involves cellular and cytokine dysregulation. Here, we investigated cytokine single-nucleotide polymorphisms (SNPs) of TNF-α, TGF-β1, IL-10, IL-6, and IFN-γ, along with their serum levels. The former were related to hematological parameters, therapy, and clinical outcome. The study included 123 consecutive patients with primary AIHA [77 warm AIHA and 46 cold agglutinin disease (CAD)], followed up for a median of 49 months. Results show that the allelic frequency of TNF-α -308 G/A polymorphisms was significantly lower in patients versus controls. Moreover, the genotypic frequency of TNF-α -308G/A and TGF-β gene codon 25 G/C genotypes was significantly lower in patients versus controls. Considering cytokine SNP genotypes associated with different gene expression levels, TNF-α high gene expression was significantly more frequent in patients, TGF-β and IL-10 high gene expression was higher in patients with more severe anemia, and TGF-β high gene expression was higher in patients with active disease. Considering treatment, TNF-α and TGF-β high gene expression was more frequent in multitreated patients and particularly in CAD. It may be speculated that this genetic predisposition to a stronger inflammatory response may result in a greater immune dysregulation and in a relapsed/refractory disease. Regarding cytokine serum levels, TNF-α and TGF-β were significantly lower, and IL-10 and IL-6 were significantly higher in patients versus controls, underlying the complex interplay between genetic background and disease features.
Collapse
Affiliation(s)
- Anna Zaninoni
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Fattizzo
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dipartimento di Oncologia e Oncoematologia, Università degli Studi di Milano, Milan, Italy
| | - Loredana Pettine
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Vercellati
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna P. Marcello
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- SC Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Luo L, Zhu Q, Li Y, Hu F, Yu J, Liao X, Xing Z, He Y, Ye Q. Application of thermosensitive-hydrogel combined with dental pulp stem cells on the injured fallopian tube mucosa in an animal model. Front Bioeng Biotechnol 2023; 10:1062646. [PMID: 36686246 PMCID: PMC9852820 DOI: 10.3389/fbioe.2022.1062646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives: Fallopian tube (FT) injury is an important factor that can lead to tubal infertility. Stem-cell-based therapy shows great potential for the treatment of injured fallopian tube. However, little research has shown that mesenchymal stem cells (MSCs) can be used to treat fallopian tube damage by in situ injection. In this study, we in situ transplanted PF127 hydrogel encapsulating dental pulp stem cells (DPSCs) into the injured sites to promote the repair and regeneration of fallopian tube injury. Materials and methods: The properties of dental pulp stem cells were evaluated by flow cytometry, immunofluorescence analysis, and multi-differentiation detection. The immunomodulatory and angiogenic characteristics of dental pulp stem cells were analyzed on the basis of the detection of inflammatory factor expression and the formation of capillary-like structures, respectively. The biocompatibility of PF127 hydrogel was evaluated by using Live/Dead and CCK-8 assays. The effects of PF127 hydrogel containing dental pulp stem cells on the repair and regeneration of fallopian tube injury were evaluated by histological analysis [e.g., hematoxylin and eosin (H&E) and Masson's trichrome staining, TUNEL staining, immunofluorescence staining, and immunohistochemistry], Enzyme-linked immunosorbent assay (ELISA), and RT-PCR detections. Results: Dental pulp stem cells had MSC-like characteristics and great immunomodulatory and angiogenic properties. PF127 hydrogel had a thermosensitive feature and great cytocompatibility with dental pulp stem cells. In addition, our results indicated that PF127 hydrogel containing dental pulp stem cells could promote the repair and regeneration of fallopian tube damage by inhibiting cell apoptosis, stimulating the secretion of angiogenic factors, promoting cell proliferation, modulating the secretion of inflammatory factors, and restoring the secretion of epithelial cells. Conclusion: In this study, our results reported that in situ injection of PF127 hydrogel encapsulating dental pulp stem cells into the injured sites could provide an attractive strategy for the future treatment of fallopian tube injury in clinical settings.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qunyan Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiangtao Yu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Lihua Luo, ; Yan He, ; Qingsong Ye,
| |
Collapse
|
3
|
Zhang H, Xu B, Liu J, Guo B, Sun H, Yang Q. SDHB reduction promotes oral lichen planus by impairing mitochondrial respiratory function. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1367. [PMID: 36660661 PMCID: PMC9843364 DOI: 10.21037/atm-22-5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Background Oral lichen planus (OLP) is a type of chronic inflammatory disorder, which represents a potential risk of malignant transformation. Understanding the mechanism of OLP-related malignant transformation could reduce the risk of cancer. Accumulating evidence indicates that the expression of succinate dehydrogenase enzyme B (SDHB) is associated with the carcinogenesis of oral squamous cell carcinoma (OSCC). However, the function and underlying mechanism of SDHB in OLP remains unknown. Methods In this study, we examined the expression of SDHB in tissues from OLP patients and normal oral mucosa (NOM) through immunohistochemical (IHC) staining, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blot (WB). Adenosine triphosphate (ATP) assay, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, and glucose uptake assay were used to explore the function of SDHB in mitochondrial injury and bioenergetic changes in OLP cell model and SDHB-overexpressing cells. Results In current study, we found that the messenger RNA (mRNA) and protein expression of SDHB was significantly decreased in OLP patients, accompanied by the accumulation of succinate. In the lipopolysaccharide (LPS) or CoCl2-stimulated OLP cell model, the expression of SDHB was decreased along with treatment time and concentration. Mechanistically, decreased SDHB enhanced hypoxia-inducible factor (HIF)-1α activity, induced mitochondrial injury, bioenergetic changes, and cytokine release. Overexpression of SDHB could reverse the above biological process and switch bioenergetic metabolism during OLP process. Conclusions Our study suggests that SDHB reduction promotes OLP by impairing mitochondrial respiratory function.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Beiyun Xu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Guo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hongying Sun
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiaozhen Yang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Bozhyk SS. ASPECTS OF ORAL MUCOSA CYTOLOGICAL SCREENING IN PATIENTS WITH RED LICHEN PLANUS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-519-523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. S. Bozhyk
- I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine
| |
Collapse
|