1
|
Xu M, Liu D, Wang L, Sun S, Liu S, Zhou Z. Clinical implications of CT-detected ascites in gastric cancer: association with peritoneal metastasis and systemic inflammatory response. Insights Imaging 2024; 15:237. [PMID: 39373781 PMCID: PMC11460829 DOI: 10.1186/s13244-024-01818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the diagnostic significance of computed tomography (CT) detected ascites in gastric cancer (GC) with peritoneal metastasis (PM) and investigate its association with systemic inflammatory response. METHODS This retrospective study included 111 GCs with ascites (PM: n = 51; No PM: n = 60). Systemic inflammatory indexes, tumor markers, and the CT-assessed characteristics of ascites were collected. The differences in parameters between the two groups were analyzed. Diagnostic performance was obtained by receiver operating characteristic curve analysis. The association between the volume of ascites and clinical characteristics was evaluated with correlation analysis. RESULTS In this study, over half of GCs with ascites were not involved with PM. The systemic immune-inflammation index (SII), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), five tumor markers, and the characteristics of ascites showed significant differences between the two groups (all p < 0.05). Among them, SII, NLR, PLR, and the volume of ascites achieved the areas under the curve of 0.700, 0.698, 0.704, and 0.903, respectively. Moreover, the volumes of ascites showed positive correlations with SII, NLR, and PLR in GCs with PM, and the volumes of ascites detected in the upper abdomen were more strongly correlated with CA125 level (all p < 0.05). CONCLUSION Many GCs with CT-detected ascites did not occur with synchronous PM. The presence of upper abdominal ascites had certain clinical significance for diagnosing PM in GCs. Systemic inflammatory indexes were elevated and positively correlated with the volume of ascites in GCs with PM, which might suggest the enhanced systemic inflammatory response. CRITICAL RELEVANCE STATEMENT CT-detected ascites in the upper abdomen played an indicative role in identifying synchronous PM in GCs, and the systemic inflammatory response was enhanced in GCs with PM, which might be helpful for clinical evaluation. KEY POINTS Many GCs with CT-detected ascites did not occur with synchronous PM. CT-detected ascites in the upper abdomen help in identifying PM in GCs. GCs with PM showed elevated systemic inflammatory indexes and enhanced systemic inflammatory response.
Collapse
Affiliation(s)
- Mengying Xu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Dan Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 210008, Nanjing, China
| | - Le Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Shuangshuang Sun
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China.
| |
Collapse
|
2
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Tabuchi M, Kikuchi S, Tazawa H, Okura T, Ogawa T, Mitsui E, Une Y, Kuroda S, Sato H, Noma K, Kagawa S, Ohara T, Ohtsuka J, Ohki R, Urata Y, Fujiwara T. Functional remodeling of intraperitoneal macrophages by oncolytic adenovirus restores anti-tumor immunity for peritoneal metastasis of gastric cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200806. [PMID: 38745748 PMCID: PMC11090911 DOI: 10.1016/j.omton.2024.200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Intraperitoneal tumor-associated macrophages (TAMs) are involved in evading anti-tumor immunity and promoting the peritoneal metastasis (PM) of gastric cancer (GC). Oncolytic viruses are known to induce the activation of host anti-tumor immunity in addition to tumor lysis. This study investigated whether a wild-type p53-loading telomerase-specific oncolytic adenovirus (OBP-702) could elicit the remodeling of intraperitoneal macrophages and enhance the efficacy of immune therapy. Increased numbers of CD163 TAMs and few CD8+ lymphocytes were immunohistochemically observed in clinical samples with PM, which suggested that TAMs were associated with the suppression of anti-tumor immunity. OBP-702 induced immunogenic cell death and upregulated PD-L1 expression in human and murine GC cell lines. Intraperitoneal administration of OBP-702 increased recruitment of CD8+ lymphocytes into the PM via the functional remodeling of intraperitoneal macrophages from TAM toward a pro-inflammatory phenotype, resulting in significantly suppressed tumor growth for the in vivo model. Furthermore, the combination of intraperitoneal OBP-702 with anti-programmed cell death-1 antibody enhanced anti-tumor immunity and prolonged the survival of mice bearing PM. Intraperitoneal immunotherapy using OBP-702 restores anti-tumor immunity via the remodeling of intraperitoneal macrophages in addition to direct tumor lysis and cooperates with immune checkpoint inhibitors to suppress PM in GC.
Collapse
Affiliation(s)
- Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Tomohiro Okura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ema Mitsui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuta Une
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Junko Ohtsuka
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Futoh Y, Miyato H, Yamaguchi H, Matsumiya M, Takahashi R, Kaneko Y, Kimura Y, Ohzawa H, Sata N, Kitayama J, Hosoya Y. Vagus nerve signal has an inhibitory influence on the development of peritoneal metastasis in murine gastric cancer. Sci Rep 2024; 14:7832. [PMID: 38570542 PMCID: PMC10991300 DOI: 10.1038/s41598-024-58440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
The vagus nerve is the only pathway for transmitting parasympathetic signals between the brain and thoracoabdominal organs, thereby exhibiting anti-inflammatory functions through the cholinergic anti-inflammatory pathway. Despite often being resected during lymph node dissection in upper gastrointestinal cancer surgery, the impact of vagotomy on postoperative outcomes in gastric cancer patients remains unclear. Sub-diaphragmatic vagotomy was performed on C57BL/6 mice. Three weeks later, syngeneic murine gastric cancer cell line YTN16P was injected into the peritoneal cavity, and the number of peritoneal metastases (PM) on the mesentery and omentum compared with control mice. The phenotypes of immune cells in peritoneal lavage and omental milky spots one day after tumor inoculation were analyzed using flow cytometry and immunohistochemistry. Intraperitoneal transfer of 3 × 105 YTN16P significantly increased the number of metastatic nodules on the mesentery in the vagotomy group compared to the control group. The omental metastasis grade was also significantly higher in the vagotomy group. Phenotypic analysis of immune cells in peritoneal lavage did not reveal significant differences after vagotomy. However, vagotomized mice exhibited a notable increase in milky spot area, with a higher presence of cytokeratin(+) tumor cells, F4/80(+) macrophages, and CD3(+) T cells. Vagus nerve signaling appears to regulate the immune response dynamics within milky spots against disseminated tumor cells and inhibits the development of PM. Preserving the vagus nerve may offer advantages in advanced gastric cancer surgery to reduce peritoneal recurrence.
Collapse
Affiliation(s)
- Yurie Futoh
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyo Miyato
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan.
- Department of Clinical Oncology, Jichi Medical University Hospital, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hironori Yamaguchi
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
- Department of Clinical Oncology, Jichi Medical University Hospital, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Misaki Matsumiya
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Rei Takahashi
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Kaneko
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Kimura
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University Hospital, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Naohiro Sata
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Yoshinori Hosoya
- Department of Surgery, Division of Gastroenterological, General and Transplant Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
5
|
Han HS, Lee KW. Liquid Biopsy: An Emerging Diagnostic, Prognostic, and Predictive Tool in Gastric Cancer. J Gastric Cancer 2024; 24:4-28. [PMID: 38225764 PMCID: PMC10774753 DOI: 10.5230/jgc.2024.24.e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Liquid biopsy, a minimally invasive procedure that causes minimal pain and complication risks to patients, has been extensively studied for cancer diagnosis and treatment. Moreover, it facilitates comprehensive quantification and serial assessment of the whole-body tumor burden. Several biosources obtained through liquid biopsy have been studied as important biomarkers for establishing early diagnosis, monitoring minimal residual disease, and predicting the prognosis and response to treatment in patients with cancer. Although the clinical application of liquid biopsy in gastric cancer is not as robust as that in other cancers, biomarker studies using liquid biopsy are being actively conducted in patients with gastric cancer. Herein, we aimed to review the role of various biosources that can be obtained from patients with gastric cancer through liquid biopsies, such as blood, saliva, gastric juice, urine, stool, peritoneal lavage fluid, and ascites, by dividing them into cellular and acellular components. In addition, we reviewed previous studies on the diagnostic, prognostic, and predictive biomarkers for gastric cancer using liquid biopsy and discussed the limitations of liquid biopsy and the challenges to overcome these limitations in patients with gastric cancer.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
6
|
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers (Basel) 2023; 15:5107. [PMID: 37894473 PMCID: PMC10605802 DOI: 10.3390/cancers15205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Peritoneal carcinomatosis originating from gastric/gastroesophageal junction cancer (GC-PC) occurs in a defined subset of gastric cancer patients with unique clinical, pathologic, molecular and immunologic characteristics that create significant obstacles to effective treatment with modern therapy. Although systemic chemo- and immuno- therapy have yielded disappointing results in GC-PC, recent advances in the characterization of GC-PC and peritoneal immune biology present new opportunities for targeted therapeutics. In this review article, we discuss the distinct properties of GC-PC and the peritoneal immune environment as they pertain to current and investigative treatment strategies. We discuss pre-clinical studies and clinical trials relevant to the modulation of the peritoneal environment as a therapeutic intervention in GC-PC. Finally, we present a road map for future combinatorial strategies based on the conception of the peritoneal cavity as a bioreactor. Within this isolated compartment, prevailing immunosuppressive conditions can be altered through regional interventions toward an adaptive phenotype that would support the effectiveness of regionally delivered cellular therapy products. It is hoped that novel combination strategies would promote efficacy not only in the sequestered peritoneal environment, but also via migration into the circulation of tumor-reactive lymphocytes to produce durable systemic disease control, thereby improving oncologic outcome and quality of life in patients with GC-PC.
Collapse
Affiliation(s)
- Catherine R. Lewis
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Samuel A. Yellin
- Department of Surgery, Lehigh Valley Health Network, Allentown, PA 18101, USA;
| | - Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Hillman Cancer Centers, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Albert D. Donnenberg
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Casey J. Allen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| |
Collapse
|
7
|
Sorokin M, Buzdin AA, Guryanova A, Efimov V, Suntsova MV, Zolotovskaia MA, Koroleva EV, Sekacheva MI, Tkachev VS, Garazha A, Kremenchutckaya K, Drobyshev A, Seryakov A, Gudkov A, Alekseenko IV, Rakitina O, Kostina MB, Vladimirova U, Moisseev A, Bulgin D, Radomskaya E, Shestakov V, Baklaushev VP, Prassolov V, Shegay PV, Li X, Poddubskaya EV, Gaifullin N. Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers. Comput Struct Biotechnol J 2023; 21:3964-3986. [PMID: 37635765 PMCID: PMC10448432 DOI: 10.1016/j.csbj.2023.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.
Collapse
Affiliation(s)
- Maksim Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Anton A. Buzdin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Anastasia Guryanova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Victor Efimov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria V. Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Marianna A. Zolotovskaia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena V. Koroleva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
| | - Marina I. Sekacheva
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Victor S. Tkachev
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | - Andrew Garazha
- Omicsway Corp., Walnut, CA 91789, USA
- Oncobox Ltd., Moscow 121205, Russia
| | | | - Aleksey Drobyshev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | | | - Alexander Gudkov
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Irina V. Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", 2, Kurchatov Square, Moscow 123182, Russian
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, Moscow 117198, Russia
| | - Olga Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Maria B. Kostina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Uliana Vladimirova
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Oncobox Ltd., Moscow 121205, Russia
| | - Aleksey Moisseev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Dmitry Bulgin
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Elena Radomskaya
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | - Viktor Shestakov
- Research Institute of Medical Primatology, 177 Mira str., Veseloye, Sochi 354376, Russia
| | | | - Vladimir Prassolov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119991, Russia
| | - Petr V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr., Los Angeles, CA 90095, USA
| | | | - Nurshat Gaifullin
- Department of Physiology and General Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Li K, Duan P, He H, Du R, Wang Q, Gong P, Bian H. Construction of the Interaction Network of Hub Genes in the Progression of Barrett's Esophagus to Esophageal Adenocarcinoma. J Inflamm Res 2023; 16:1533-1551. [PMID: 37077220 PMCID: PMC10106806 DOI: 10.2147/jir.s403928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
Introduction Esophageal adenocarcinoma (EAC) is one of the histologic types of esophageal cancer with a poor prognosis. The majority of EAC originate from Barrett's esophagus (BE). There are few studies focusing on the dynamic progression of BE to EAC. Methods R software was used to analyze differentially expressed genes (DEGs) based on RNA-seq data of 94 normal esophageal squamous epithelial (NE) tissues, 113 BE tissues and 147 EAC tissues. The overlapping genes of DEGs between BE and EAC were analyzed by Venn diagram tool. The hub genes were selected by Cytoscape software based on the protein-protein interaction network of the overlapping genes using STRING database. The functional analysis of hub genes was performed by R software and the protein expression was identified by immunohistochemistry. Results In the present study, we found a large degree of genetic similarity between BE and EAC, and further identified seven hub genes (including COL1A1, TGFBI, MMP1, COL4A1, NID2, MMP12, CXCL1) which were all progressively upregulated in the progression of NE-BE-EAC. We have preliminarily uncovered the probable molecular mechanisms of these hub genes in disease development and constructed the ceRNA regulatory network of hub genes. More importantly, we explored the possibility of hub genes as biomarkers in the disease progression of NE-BE-EAC. For example, TGFBI can be used as biomarkers to predict the prognosis of EAC patients. COL1A1, NID2 and COL4A1 can be used as biomarkers to predict the response to immune checkpoint blockade (ICB) therapy. We also constructed a disease progression risk model for NE-BE-EAC based on CXCL1, MMP1 and TGFBI. Finally, the results of drug sensitivity analysis based on hub genes showed that drugs such as PI3K inhibitor TGX221, bleomycin, PKC inhibitor Midostaurin, Bcr-Abl inhibitor Dasatinib, HSP90 inhibitor 17-AAG, and Docetaxel may be potential candidates to inhibit the progression of BE to EAC. Conclusion This study is based on a large number of clinical samples with high credibility, which is useful for revealing the probable carcinogenic mechanism of BE to EAC and developing new clinical treatment strategies.
Collapse
Affiliation(s)
- Kai Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
| | - Peipei Duan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
| | - Haifa He
- Department of Pathology, Nanyang Central Hospital, Nanyang, Henan, People’s Republic of China
| | - Ruijuan Du
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
| | - Qian Wang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
| | - Pengju Gong
- The University of Texas MD Anderson Cancer Center UThealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, People’s Republic of China
- Correspondence: Hua Bian; Kai Li, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, No. 80 Changjiang Road, Wancheng District, Nanyang, Henan, People’s Republic of China, Email ;
| |
Collapse
|
9
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|