1
|
Narvaez D, Nadal J, Nervo A, Costanzo MV, Paletta C, Petracci FE, Rivero S, Ostinelli A, Freile B, Enrico D, Pombo MT, Amat M, Aguirre ED, Chacon M, Waisberg F. The Emerging Role of Tertiary Lymphoid Structures in Breast Cancer: A Narrative Review. Cancers (Basel) 2024; 16:396. [PMID: 38254885 PMCID: PMC10814091 DOI: 10.3390/cancers16020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024] Open
Abstract
This narrative review aims to clarify the role of tertiary lymphoid structures in breast cancer. We examine their development, composition, and prognostic value, and current ways of recognizing them. A comprehensive literature review was performed using the PubMed/Medline, Scopus, and EMBASE databases. A significant area of interest in breast cancer research involves targeting immune checkpoint molecules, particularly in the triple-negative subtype, where treatment options remain limited. However, existing biomarkers have limitations in accurately predicting treatment response. In this context, tertiary lymphoid structures (TLSs) emerge as a prognostic biomarker and also as a promising predictive marker for response. TLSs are ectopic lymphoid formations or neo-organogenesis that can develop after prolonged exposure to inflammatory signals mediated by chemokines and cytokines. Their presence is inversely correlated with estrogen receptor (ER) and/or progesterone receptor (PR) expression, but positively associated with a higher pathologic complete response rate and improved overall survival. In certain scenarios, TLS-positive tumors were associated with improved outcomes regardless of the presence of PDL-1 (programmed cell death ligand 1) expression or TILs (tumor-infiltrating lymphocytes).
Collapse
Affiliation(s)
- Dana Narvaez
- Breast Cancer Division, Alexander Fleming Institute, Buenos Aires 1425, Argentina; (J.N.); (A.N.); (M.V.C.); (C.P.); (F.E.P.); (S.R.); (A.O.); (B.F.); (D.E.); (M.T.P.); (M.A.); (E.D.A.); (M.C.); (F.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Huang H, Li Z, Xia Y, Zhao Z, Wang D, Jin H, Liu F, Yang Y, Shen L, Lu Z. Association between radiomics features of DCE-MRI and CD8 + and CD4 + TILs in advanced gastric cancer. Pathol Oncol Res 2023; 29:1611001. [PMID: 37342362 PMCID: PMC10277864 DOI: 10.3389/pore.2023.1611001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Objective: The aim of this investigation was to explore the correlation between the levels of tumor-infiltrating CD8+ and CD4+ T cells and the quantitative pharmacokinetic parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced gastric cancer. Methods: We retrospectively analyzed the data of 103 patients with histopathologically confirmed advanced gastric cancer (AGC). Three pharmacokinetic parameters, Kep, Ktrans, and Ve, and their radiomics characteristics were obtained by Omni Kinetics software. Immunohistochemical staining was used to determine CD4+ and CD8+ TILs. Statistical analysis was subsequently performed to assess the correlation between radiomics characteristics and CD4+ and CD8+ TIL density. Results: All patients included in this study were finally divided into either a CD8+ TILs low-density group (n = 51) (CD8+ TILs < 138) or a high-density group (n = 52) (CD8+ TILs ≥ 138), and a CD4+ TILs low-density group (n = 51) (CD4+ TILs < 87) or a high-density group (n = 52) (CD4+ TILs ≥ 87). ClusterShade and Skewness based on Kep and Skewness based on Ktrans both showed moderate negative correlation with CD8+ TIL levels (r = 0.630-0.349, p < 0.001), with ClusterShade based on Kep having the highest negative correlation (r = -0.630, p < 0.001). Inertia-based Kep showed a moderate positive correlation with the CD4+ TIL level (r = 0.549, p < 0.001), and the Correlation based on Kep showed a moderate negative correlation with the CD4+ TIL level, which also had the highest correlation coefficient (r = -0.616, p < 0.001). The diagnostic efficacy of the above features was assessed by ROC curves. For CD8+ TILs, ClusterShade of Kep had the highest mean area under the curve (AUC) (0.863). For CD4+ TILs, the Correlation of Kep had the highest mean AUC (0.856). Conclusion: The radiomics features of DCE-MRI are associated with the expression of tumor-infiltrating CD8+ and CD4+ T cells in AGC, which have the potential to noninvasively evaluate the expression of CD8+ and CD4+ TILs in AGC patients.
Collapse
Affiliation(s)
- Huizhen Huang
- Shaoxing of Medicine, Shaoxing University, Shaoxing, China
| | - Zhiheng Li
- Department of Radiology, Anhui Provincial Hospital, Hefei, China
| | - Yue Xia
- Shaoxing of Medicine, Shaoxing University, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Hongyan Jin
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Fang Liu
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Ye Yang
- Country Department of Pathology, Shaoxing People’s Hospital, Shaoxing, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing, China
- The First Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|