1
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
2
|
Manuelpillai B, Zendt M, Chang-Rabley E, Ricotta EE. Stuck in pandemic uncertainty: a review of the persistent effects of COVID-19 infection in immune-deficient people. Clin Microbiol Infect 2024; 30:1007-1011. [PMID: 38552795 PMCID: PMC11254561 DOI: 10.1016/j.cmi.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND People who are immune-deficient/disordered (IDP) are underrepresented in COVID-19 studies. Specifically, there is limited research on post-SARS-CoV-2 infection outcomes, including viral persistence and long-term sequelae in these populations. OBJECTIVES This review aimed to examine the published literature on the occurrence of persistent SARS-CoV-2 positivity, relapse, reinfections, variant coinfection, and post-acute sequelae of COVID-19 in IDP. Although the available literature largely centred on those with secondary immunodeficiencies, studies on people with inborn errors of immunity are also included. SOURCES PubMed was searched using medical subject headings terms to identify relevant articles from the last 4 years. Articles on primary and secondary immunodeficiencies were chosen, and a special emphasis was placed on including articles that studied people with inborn errors of immunity. The absence of extensive cohort studies including these individuals has limited most articles in this review to case reports, whereas the articles focusing on secondary immunodeficiencies include larger cohort, case-control, and cross-sectional studies. Articles focusing solely on HIV/AIDS were excluded. CONTENT Scientific literature suggests that IDP of any age are more likely to experience persistent SARS-CoV-2 infections. Although adult IDP exhibits a higher rate of post-acute sequelae of COVID-19, milder COVID-19 infections in children may reduce their risk of experiencing post-acute sequelae of COVID-19. Reinfections and coinfections may occur at a slightly higher rate in IDP than in the general population. IMPLICATIONS Although IDP experience increased viral persistence and inter-host evolution, it is unlikely that enough evidence can be generated at the population-level to support or refute the hypothesis that infections in IDP are significantly more likely to result in variants of concern than infections in the general population. Additional research on the relationship between viral persistence and the rate of long-term sequelae in IDP could inform the understanding of the immune response to SARS-CoV-2 in IDP and the general population.
Collapse
Affiliation(s)
- Bevin Manuelpillai
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie Zendt
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma Chang-Rabley
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Ricotta
- Epidemiology and Data Management Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
van Leeuwen LPM, Grobben M, GeurtsvanKessel CH, Ellerbroek PM, de Bree GJ, Potjewijd J, Rutgers A, Jolink H, van de Veerdonk FL, van Gils MJ, de Vries RD, Dalm VASH. Immunogenicity of COVID-19 booster vaccination in IEI patients and their one year clinical follow-up after start of the COVID-19 vaccination program. Front Immunol 2024; 15:1390022. [PMID: 38698851 PMCID: PMC11063285 DOI: 10.3389/fimmu.2024.1390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.
Collapse
Affiliation(s)
- Leanne P. M. van Leeuwen
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Travel Clinic, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Pauline M. Ellerbroek
- Department of Internal Medicine, Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Judith Potjewijd
- Department of Internal Medicine, Division Clinical Immunology, Maastricht UMC, Maastricht, Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, UMC Groningen, Groningen, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
4
|
Costanzo GAML, Deiana CM, Sanna G, Perra A, Campagna M, Ledda AG, Coghe F, Palmas V, Cappai R, Manzin A, Chessa L, Del Giacco S, Firinu D. Impact of Exposure to Vaccination and Infection on Cellular and Antibody Response to SARS-CoV-2 in CVID Patients Through COVID-19 Pandemic. J Clin Immunol 2023; 44:12. [PMID: 38129351 DOI: 10.1007/s10875-023-01616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The purpose of this study is to investigate the kinetics of response against SARS-CoV-2 elicited by vaccination and/or breakthrough infection (occurred after 3 doses of BNT162b2) in a cohort CVID patients. METHODS We measured humoral and cellular immunity using quantitative anti-spike antibody (anti-S-IgG) and neutralization assay and specific interferon-gamma release assay (IGRA) before and after the third or fourth dose of BNT162b2 and/or after COVID-19. RESULTS In CVID, 58.3% seroconverted after 2 doses that increased to 77.8% after 3 doses. Between the second and third dose, there was a decline in humoral compartment that led to titers below the cutoff of 1:10 (MNA90%) in CVID. This was paralleled by a significantly lower proportion (30%) and reduced magnitude of the residual cellular response among CVID. The third dose achieved a lower titer of anti-S and nAb against the Wuhan strain than HC and significantly decreased the rate of those showing solely a positive neutralizing activity and those with simultaneous negativity of IGRA and nAbs; the differences in IGRA were overall reduced with respect to HC. At further sampling after breakthrough SARS-COV-2 infection, mostly in the omicron era, or fourth dose, 6 months after the last event, the residual nAb titer to Wuhan strain was still significantly higher in HC, while there was no significant difference of nAbs to BA.1. The rate of IGRA responders was 65.5% in CVID and 90.5% in HC (p=0.04), while the magnitude of response was similar. None of CVID had double negativity to nAbs and IGRA at the last sampling. CONCLUSION This data shows an increase of adaptive immunity in CVID after mRNA vaccination in parallel to boosters, accrual number of exposures and formation of hybrid immunity.
Collapse
Affiliation(s)
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Giuseppina Sanna
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Andrea Perra
- Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, 09100, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Andrea Giovanni Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Ferdinando Coghe
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Vanessa Palmas
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Riccardo Cappai
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Luchino Chessa
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy.
- Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Cagliari, Italy.
- Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy.
| |
Collapse
|
5
|
Pulvirenti F, Garzi G, Milito C, Sculco E, Sciannamea M, Napoli A, Cinti L, Roberto P, Punziano A, Carrabba M, Piano Mortari E, Carsetti R, Antonelli G, Quinti I. SARS-CoV-2 pre-exposure prophylaxis with tixagevimab/cilgavimab (AZD7442) provides protection in inborn errors of immunity with antibody defects: a real-world experience. Front Immunol 2023; 14:1249462. [PMID: 37954618 PMCID: PMC10639167 DOI: 10.3389/fimmu.2023.1249462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Preventive strategies against severe COVID-19 in Inborn Errors of Immunity (IEI) include bivalent vaccines, treatment with SARS-CoV-2 monoclonal antibodies (mAbs), early antiviral therapies, and pre-exposure prophylaxis (PrEP). Objective To assess the effectiveness of the PrEP with tixagevimab/cilgavimab (AZD7442) in IEI with primary antibody defects during the COVID-19 Omicron wave. Methods A six-month prospective study evaluated the SARS-CoV-2 infection rate and the COVID-19 severity in the AZD7442 group, in the no-AZD7442 group, and in a group of patients with a recent SARS-CoV-2 infection (< three months). Spike-specific IgG levels were measured at regular intervals. Results Six out of thirty-three patients (18%) and 54/170 patients (32%) became infected in the AZD7442 group and in the no-AZD7442 group, respectively. Within 90 days post-administration, the AZD7442 group was 85% less likely to be infected and 82% less likely to have a symptomatic disease than the no-AZD7442 group. This effect was lost thereafter. In the entire cohort, no mortality/hospitalisation was observed. The control group of 35 recently infected patients was 88% and 92% less likely to be infected than the AZD7442 and no-AZD7442 groups. Serum anti-Spike IgG reached the highest peak seven days post-AZD7442 PrEP then decreased, remaining over 1000 BAU/mL 180 days thereafter. Conclusion In patients with IEI and antibody defects, AZD7442 prophylaxis had a transient protective effect, possibly lost possibly because of the appearance of new variants. However, PrEP with newer mAbs might still represent a feasible preventive strategy in the future in this population.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Anna Napoli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Piergiorgio Roberto
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
- Microbiology and Virology Unit, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
| | - Isabella Quinti
- Reference Centre for Primary Immune Deficiencies, Sapienza University Hospital “Policlinico Umberto I”, Rome, Italy
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Bez P, D’ippolito G, Deiana CM, Finco Gambier R, Pica A, Costanzo G, Garzi G, Scarpa R, Landini N, Cinetto F, Firinu D, Milito C. Struggling with COVID-19 in Adult Inborn Errors of Immunity Patients: A Case Series of Combination Therapy and Multiple Lines of Therapy for Selected Patients. Life (Basel) 2023; 13:1530. [PMID: 37511905 PMCID: PMC10381188 DOI: 10.3390/life13071530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 infection is now a part of the everyday lives of immunocompromised patients, but the choice of treatment and the time of viral clearance can often be complex, exposing patients to possible complications. The role of the available antiviral and monoclonal therapies is a matter of debate, as are their effectiveness and potential related adverse effects. To date, in the literature, the amount of data on the use of combination therapies and on the multiple lines of anti-SARS-CoV-2 therapy available to the general population and especially to inborn error of immunity (IEI) patients is small. METHODS Here, we report a case series of five adult IEI patients managed as inpatients at three Italian IEI referral centers (Rome, Treviso, and Cagliari) treated with combination therapy or multiple therapeutic lines for SARS-CoV-2 infection, such as monoclonal antibodies (mAbs), antivirals, convalescent plasma (CP), mAbs plus antiviral, and CP combined with antiviral. RESULTS This study may support the use of combination therapy against SARS-CoV-2 in complicated IEI patients with predominant antibody deficiency and impaired vaccine response.
Collapse
Affiliation(s)
- Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (P.B.); (R.F.G.); (R.S.); (F.C.)
- Department of Medicine-DIMED, University of Padova, 35122 Padua, Italy
| | - Giancarlo D’ippolito
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.); (A.P.); (G.G.); (C.M.)
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy; (G.C.); (D.F.)
| | - Renato Finco Gambier
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (P.B.); (R.F.G.); (R.S.); (F.C.)
- Department of Medicine-DIMED, University of Padova, 35122 Padua, Italy
| | - Andrea Pica
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.); (A.P.); (G.G.); (C.M.)
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy; (G.C.); (D.F.)
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.); (A.P.); (G.G.); (C.M.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (P.B.); (R.F.G.); (R.S.); (F.C.)
- Department of Medicine-DIMED, University of Padova, 35122 Padua, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy; (P.B.); (R.F.G.); (R.S.); (F.C.)
- Department of Medicine-DIMED, University of Padova, 35122 Padua, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09100 Cagliari, Italy; (G.C.); (D.F.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.D.); (A.P.); (G.G.); (C.M.)
| |
Collapse
|
7
|
Steiner S, Schwarz T, Corman VM, Jeworowski LM, Bauer S, Drosten C, Scheibenbogen C, Hanitsch LG. Impaired B Cell Recall Memory and Reduced Antibody Avidity but Robust T Cell Response in CVID Patients After COVID-19 Vaccination. J Clin Immunol 2023; 43:869-881. [PMID: 36932291 PMCID: PMC10023009 DOI: 10.1007/s10875-023-01468-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE Humoral and cellular immune responses were described after COVID-19 vaccination in patients with common variable immunodeficiency disorder (CVID). This study aimed to investigate SARS-CoV-2-specific antibody quality and memory function of B cell immunity as well as T cell responses after COVID-19 vaccination in seroresponding and non-responding CVID patients. METHODS We evaluated antibody avidity and applied a memory B cell ELSPOT assay for functional B cell recall memory response to SARS-CoV-2 after COVID-19 vaccination in CVID seroresponders. We comparatively analyzed SARS-CoV-2 spike reactive polyfunctional T cell response and reactive peripheral follicular T helper cells (pTFH) by flow cytometry in seroresponding and non-seroresponding CVID patients. All CVID patients had previously failed to mount a humoral response to pneumococcal conjugate vaccine. RESULTS SARS-CoV-2 spike antibody avidity of seroresponding CVID patients was significantly lower than in healthy controls. Only 30% of seroresponding CVID patients showed a minimal memory B cell recall response in ELISPOT assay. One hundred percent of CVID seroresponders and 83% of non-seroresponders had a detectable polyfunctional T cell response. Induction of antigen-specific CD4+CD154+CD137+CXCR5+ pTFH cells by the COVID-19 vaccine was higher in CVID seroresponder than in non-seroresponder. Levels of pTFH did not correlate with antibody response or avidity. CONCLUSION Reduced avidity and significantly impaired recall memory formation after COVID-19 vaccination in seroresponding CVID patients stress the importance of a more differentiated analysis of humoral immune response in CVID patients. Our observations challenge the clinical implications that follow the binary categorization into seroresponder and non-seroresponder.
Collapse
Affiliation(s)
- Sophie Steiner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Campus Virchow, Augustenburger Platz 1/Südstraße 2, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Tatjana Schwarz
- Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German Centre for Infection Research (DZIF), Associated Partner, Charitéplatz 1, 13353, Berlin, Germany
| | - Victor M Corman
- Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German Centre for Infection Research (DZIF), Associated Partner, Charitéplatz 1, 13353, Berlin, Germany
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Lara M Jeworowski
- Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German Centre for Infection Research (DZIF), Associated Partner, Charitéplatz 1, 13353, Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Campus Virchow, Augustenburger Platz 1/Südstraße 2, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian Drosten
- Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, German Centre for Infection Research (DZIF), Associated Partner, Charitéplatz 1, 13353, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Campus Virchow, Augustenburger Platz 1/Südstraße 2, 13353, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Leif G Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Campus Virchow, Augustenburger Platz 1/Südstraße 2, 13353, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany.
| |
Collapse
|
8
|
Candel FJ, Barreiro P, Salavert M, Cabello A, Fernández-Ruiz M, Pérez-Segura P, San Román J, Berenguer J, Córdoba R, Delgado R, España PP, Gómez-Centurión IA, González Del Castillo JM, Heili SB, Martínez-Peromingo FJ, Menéndez R, Moreno S, Pablos JL, Pasquau J, Piñana JL, On Behalf Of The Modus Investigators Adenda. Expert Consensus: Main Risk Factors for Poor Prognosis in COVID-19 and the Implications for Targeted Measures against SARS-CoV-2. Viruses 2023; 15:1449. [PMID: 37515137 PMCID: PMC10383267 DOI: 10.3390/v15071449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical evolution of patients infected with the Severe Acute Respiratory Coronavirus type 2 (SARS-CoV-2) depends on the complex interplay between viral and host factors. The evolution to less aggressive but better-transmitted viral variants, and the presence of immune memory responses in a growing number of vaccinated and/or virus-exposed individuals, has caused the pandemic to slowly wane in virulence. However, there are still patients with risk factors or comorbidities that put them at risk of poor outcomes in the event of having the coronavirus infectious disease 2019 (COVID-19). Among the different treatment options for patients with COVID-19, virus-targeted measures include antiviral drugs or monoclonal antibodies that may be provided in the early days of infection. The present expert consensus is based on a review of all the literature published between 1 July 2021 and 15 February 2022 that was carried out to establish the characteristics of patients, in terms of presence of risk factors or comorbidities, that may make them candidates for receiving any of the virus-targeted measures available in order to prevent a fatal outcome, such as severe disease or death. A total of 119 studies were included from the review of the literature and 159 were from the additional independent review carried out by the panelists a posteriori. Conditions found related to strong recommendation of the use of virus-targeted measures in the first days of COVID-19 were age above 80 years, or above 65 years with another risk factor; antineoplastic chemotherapy or active malignancy; HIV infection with CD4+ cell counts < 200/mm3; and treatment with anti-CD20 immunosuppressive drugs. There is also a strong recommendation against using the studied interventions in HIV-infected patients with a CD4+ nadir <200/mm3 or treatment with other immunosuppressants. Indications of therapies against SARS-CoV-2, regardless of vaccination status or history of infection, may still exist for some populations, even after COVID-19 has been declared to no longer be a global health emergency by the WHO.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Pablo Barreiro
- Regional Public Health Laboratory, Infectious Diseases, Internal Medicine, Hospital General Universitario La Paz, 28055 Madrid, Spain
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases, Internal Medicine, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Alfonso Cabello
- Internal Medicine, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28041 Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Jesús San Román
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Juan Berenguer
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28007 Madrid, Spain
| | - Raúl Córdoba
- Haematology and Haemotherapy, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Rafael Delgado
- Clinical Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Pedro Pablo España
- Pneumology, Hospital Universitario de Galdakao-Usansolo, 48960 Vizcaya, Spain
| | | | | | - Sarah Béatrice Heili
- Intermediate Respiratory Care Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Francisco Javier Martínez-Peromingo
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Madrid, Spain
- Geriatrics, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Rosario Menéndez
- Pneumology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Santiago Moreno
- Infectious Diseases, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - José Luís Pablos
- Rheumatology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), 28041 Madrid, Spain
| | - Juan Pasquau
- Infectious Diseases, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Luis Piñana
- Haematology and Haemotherapy, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | | |
Collapse
|
9
|
Tangye SG. Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. J Allergy Clin Immunol 2023; 151:818-831. [PMID: 36522221 PMCID: PMC9746792 DOI: 10.1016/j.jaci.2022.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales Sydney, Randwick, Randwick, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA).
| |
Collapse
|
10
|
Milito C, Firinu D, Bez P, Villa A, Punziano A, Lagnese G, Costanzo G, van Leeuwen LPM, Piazza B, Deiana CM, d’Ippolito G, Del Giacco SR, Rattazzi M, Spadaro G, Quinti I, Scarpa R, Dalm VASH, Cinetto F. A beacon in the dark: COVID-19 course in CVID patients from two European countries: Different approaches, similar outcomes. Front Immunol 2023; 14:1093385. [PMID: 36845159 PMCID: PMC9944020 DOI: 10.3389/fimmu.2023.1093385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Background CVID patients present an increased risk of prolonged SARS-CoV-2 infection and re-infection and a higher COVID-19-related morbidity and mortality compared to the general population. Since 2021, different therapeutic and prophylactic strategies have been employed in vulnerable groups (vaccination, SARS-CoV-2 monoclonal antibodies and antivirals). The impact of treatments over the last 2 years has not been explored in international studies considering the emergence of viral variants and different management between countries. Methods A multicenter retrospective/prospective real-life study comparing the prevalence and outcomes of SARS-CoV-2 infection between a CVID cohort from four Italian Centers (IT-C) and one cohort from the Netherlands (NL-C), recruiting 773 patients. Results 329 of 773 CVID patients were found positive for SARS-CoV-2 infection between March 1st, 2020 and September 1st 2022. The proportion of CVID patients infected was comparable in both national sub-cohorts. During all waves, chronic lung disease, "complicated" phenotype, chronic immunosuppressive treatment and cardiovascular comorbidities impacted on hospitalization, whereas risk factors for mortality were older age, chronic lung disease, and bacterial superinfections. IT-C patients were significantly more often treated, both with antivirals and mAbs, than NL-C patients. Outpatient treatment, available only in Italy, started from the Delta wave. Despite this, no significant difference was found for COVID-19 severity between the two cohorts. However, pooling together specific SARS-CoV-2 outpatient treatments (mAbs and antivirals), we found a significant effect on the risk of hospitalization starting from Delta wave. Vaccination with ≥ 3 doses shortened RT-PCR positivity, with an additional effect only in patients receiving antivirals. Conclusions The two sub-cohorts had similar COVID-19 outcomes despite different treatment approaches. This points out that specific treatment should now be reserved for selected subgroups of CVID patients, based on pre-existing conditions.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Annalisa Villa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Leanne P. M. van Leeuwen
- Department of Viroscience, Travel Clinic, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Piazza
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Carla Maria Deiana
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | | | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy,*Correspondence: Riccardo Scarpa,
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Department of Medicine (DIMED), University of Padova, Padova, Italy
| |
Collapse
|
11
|
Long-Term Immunological Memory of SARS-CoV-2 Is Present in Patients with Primary Antibody Deficiencies for up to a Year after Vaccination. Vaccines (Basel) 2023; 11:vaccines11020354. [PMID: 36851231 PMCID: PMC9959530 DOI: 10.3390/vaccines11020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Some studies have found increased coronavirus disease-19 (COVID-19)-related morbidity and mortality in patients with primary antibody deficiencies. Immunization against COVID-19 may, therefore, be particularly important in these patients. However, the durability of the immune response remains unclear in such patients. In this study, we evaluated the cellular and humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in a cross-sectional study of 32 patients with primary antibody deficiency (n = 17 with common variable immunodeficiency (CVID) and n = 15 with selective IgA deficiency) and 15 healthy controls. Serological and cellular responses were determined using enzyme-linked immunosorbent assay and interferon-gamma release assays. The subsets of B and T lymphocytes were measured using flow cytometry. Of the 32 patients, 28 had completed the vaccination regimen with a median time after vaccination of 173 days (IQR = 142): 27 patients showed a positive spike-peptide-specific antibody response, and 26 patients showed a positive spike-peptide-specific T-cell response. The median level of antibody response in CVID patients (5.47 ratio (IQR = 4.08)) was lower compared to healthy controls (9.43 ratio (IQR = 2.13)). No difference in anti-spike T-cell response was found between the groups. The results of this study indicate that markers of the sustained SARS-CoV-2 spike-specific immune response are detectable several months after vaccination in patients with primary antibody deficiencies comparable to controls.
Collapse
|
12
|
Løken RØ, Fevang B. Cellular immunity in COVID-19 and other infections in Common variable immunodeficiency. Front Immunol 2023; 14:1124279. [PMID: 37180118 PMCID: PMC10173090 DOI: 10.3389/fimmu.2023.1124279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
COVID-19 has shed light on the role of cellular immunity in the absence of humoral response in different patient groups. Common variable immunodeficiency (CVID) is characterized by impaired humoral immunity but also an underlying T-cell dysregulation. The impact of T-cell dysregulation on cellular immunity in CVID is not clear, and this review summarizes available literature on cellular immunity in CVID with a particular focus on COVID-19. Overall mortality of COVID-19 in CVID is difficult to assess, but seems not significantly elevated, and risk factors for severe disease mirrors that of the general population, including lymphopenia. Most CVID patients have a significant T-cell response to COVID-19 disease with possible cross-reactivity to endemic coronaviruses. Several studies find a significant but impaired cellular response to basal COVID-19 mRNA vaccination that is independent of an antibody response. CVID patients with infection only have better cellular responses to vaccine in one study, but there is no clear association to T-cell dysregulation. Cellular response wane over time but responds to a third booster dose of vaccine. Opportunistic infection as a sign of impaired cellular immunity in CVID is rare but is related to the definition of the disease. CVID patients have a cellular response to influenza vaccine that in most studies is comparable to healthy controls, and annual vaccination against seasonal influenza should be recommended. More research is required to clarify the effect of vaccines in CVID with the most immediate issue being when to booster the COVID-19 vaccine.
Collapse
Affiliation(s)
- Ragnhild Øye Løken
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
- Centre for Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- *Correspondence: Børre Fevang,
| |
Collapse
|