1
|
Zhu YY, Dong YH, Gu FT, Zhao ZC, Huang LX, Cheng WY, Wu JY. Anti-Inflammatory Effects of Cordyceps Cs-HK1 Fungus Exopolysaccharide on Lipopolysaccharide-Stimulated Macrophages via the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:3885. [PMID: 39599671 PMCID: PMC11597393 DOI: 10.3390/nu16223885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic inflammation is a common factor in the pathological processes of multiple human diseases. EPS-LM, an exopolysaccharide (EPS) from the Cordyceps sinensis fungus Cs-HK1, has shown notable anti-inflammatory activities in previous studies. This study aimed to investigate the major signaling events mediating the anti-inflammatory effects of EPS-LM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell culture. EPS-LM treatment significantly reduced LPS-induced production of pro-inflammatory mediators, including nitric oxide (NO) and reactive oxygen species (ROS). It also suppressed the expression levels of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88), subsequently delaying the translocation of nuclear factor-kappa B (NF-κB) to the nucleus. Additionally, co-immunoprecipitation (Co-IP) experiments demonstrated that EPS-LM inhibited the binding of TLR4 to MyD88. The ability of EPS-LM to inhibit the TLR4/MyD88/NF-κB pathway, coupled with its capacity to reduce oxidative stress, underscores its multifaceted anti-inflammatory effects. These effects render EPS-LM as a promising candidate for the comprehensive management of various inflammatory and oxidative stress-related conditions, protecting against cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Wai-Yin Cheng
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Jian-Yong Wu
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
2
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
3
|
Huang X, Chen X, Xian Y, Jiang F. Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs. Carbohydr Res 2024; 542:109205. [PMID: 38981321 DOI: 10.1016/j.carres.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Xingyin Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China.
| |
Collapse
|
4
|
Zhou W, Yuan W, Chen Y, Li C, Hu L, Li Q, Wang J, Xue R, Sun Y, Xia Q, Hu L, Wei Y, He M. Single-cell transcriptomics reveals the pulmonary inflammation induced by inhalation of subway fine particles. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132896. [PMID: 37951166 DOI: 10.1016/j.jhazmat.2023.132896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
People generally take the subway and inevitably inhale the fine particles (PM2.5) on subway platforms. This study revealed whether and how subway PM2.5 causes lung inflammation. Herein, the pulmonary inflammatory response to subway PM2.5 was observed in mice, manifesting as the inflammatory cells infiltration and collagen deposition in tissue, inflammatory cytokine enhancement in bronchoalveolar lavage fluid and Toll-like receptors signal pathway activation in the lungs. Furthermore, single-cell RNA sequencing unearthed subway PM2.5-induced cell-specific responses in the lungs. Twenty immune subsets were identified by the molecular and functional properties. Specific cell populations of CD4+ T and γδ T cells were regarded as the predominant sources of pneumonitis induced by subway PM2.5. Moreover, we demonstrated that the lung inflammatory injury was significantly more attenuated in Rag1-/- mice lacking functional T cells and B cells than that in wild type mice. We proved the slight inflammation of lung tissue in Rag1-/- mice may be dependent on monocytes and neutrophils by activation of the intracellular molecular network. This is the first experimental study on subway PM2.5 causing pulmonary inflammatory damage. It will set an alarm for people who usually travel by subway and efficient measures to reduce PM2.5 should be developed in subway stations.
Collapse
Affiliation(s)
- Weilai Zhou
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Wenke Yuan
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuwei Chen
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qidian Li
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jiawei Wang
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Rou Xue
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Sun
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qing Xia
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Longji Hu
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Wei
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- Liaoning Key Laboratory of Environmental Health Damage Research and Assessment, Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
5
|
Nie L, Yang Z, Qin X, Lai KP, Qin J, Yang B, Su M. Vitamin C protects the spleen against PFOA-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161266. [PMID: 36592905 DOI: 10.1016/j.scitotenv.2022.161266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial and consumer products of our daily life. It is well-documented that PFOA is closely associated with fatty liver disease. Recently, cumulating studies demonstrated the immunotoxicity of PFOA, but its harmful effect on the largest immune organ, spleen is still largely unknown. In the present study, we used PFOA-exposed mouse model together with comparative transcriptomic analysis to understand the molecular mechanisms underlying the immunotoxicity of PFOA. Furthermore, we investigated the possible use of vitamin C to reverse the PFOA-induced immunotoxicity in spleen. Our result showed that the PFOA exposure could reduce the spleen weight and plasma lymphocytes, and the splenic comparative transcriptomic analysis highlighted the alteration of cell proliferation, metabolism and immune response through the regulation of gene clusters including nicotinamide nucleotide transhydrogenases (NNT) and lymphocyte antigen 6 family member D and K (LY6D and LY6K). More importantly, the supplementation of vitamin C would relieve the PFOA-reduced spleen index and white blood cells. The bioinformatic analysis of transcriptome suggested its involvement in the spleen cell proliferation and immune response. For the first time, our study delineated the molecular mechanisms underlying the PFOA-induced immunotoxicity in the spleen. Furthermore, our results suggested that the supplementation of vitamin C had beneficial effect on the PFOA-altered spleen functions.
Collapse
Affiliation(s)
- Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Zhiwen Yang
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Jingru Qin
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, PR China.
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
6
|
Xu P, Yang Z, Du S, Hong Z, Zhong S. Intestinal microbiota analysis and network pharmacology reveal the mechanism by which Lianhua Qingwen capsule improves the immune function of mice infected with influenza A virus. Front Microbiol 2022; 13:1035941. [PMID: 36504796 PMCID: PMC9732014 DOI: 10.3389/fmicb.2022.1035941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Lianhua Qingwen capsule (LHQW) can attenuate lung injury caused by influenza virus infection. However, it is unclear whether the intestinal microbiota plays a role in LHQW activity in ameliorating viral infectious pneumonia. This study aimed to investigate the role of intestinal microbiota in LHQW activity in ameliorating viral infectious pneumonia and its possible mechanisms. Research design and methods A mouse model of influenza A viral pneumonia was established by intranasal administration in BALB/c mice. Detection of influenza virus in the lungs, pathological examination of the lungs and small intestine, and biochemical detection of inflammatory indices were performed. The effects of LHQW on intestinal microbiota were evaluated by 16S rRNA gene sequencing. The key components and targets of LHQW were screened via network pharmacology and verified through molecular docking, molecular dynamics simulation, and free binding energy calculations. Results Body weight decreased, inflammatory factor levels were disturbed, and the lung and intestinal mucosal barriers were significantly injured in the infected group. The alpha diversity of the intestinal microbiota decreased, and the abundance of Bacteroidetes, Muribaculaceae_unclassified, and Streptococcus decreased significantly. LHQW treatment reduced the viral load in the lungs, rescued body weight and survival, alleviated lung and intestinal mucosal barrier injury, reversed the reduction in the intestinal microbiota alpha diversity, and significantly increased the abundance of Bacteroidetes and Muribaculaceae. Network pharmacological analysis showed that six active herbal medicinal compounds from LHQW could regulate the intestinal microbiota and inhibit the immune-inflammatory response through the Toll-like receptor (TLR) and nuclear factor-κB (NF-κB) signalling pathways in the lungs. Conclusion These results suggest that LHQW is effective for treating influenza A virus infectious pneumonia, and the mechanism is associated with the regulation of the TLR4/NF-κB signalling pathway in the lungs by restoring intestinal microbiota and repairing the intestinal wall.
Collapse
Affiliation(s)
- Ping Xu
- Wannan Medical College, Wuhu, China,Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Yang
- Wannan Medical College, Wuhu, China
| | | | - Zongyuan Hong
- Wannan Medical College, Wuhu, China,*Correspondence: Zongyuan Hong,
| | - Shuzhi Zhong
- Wannan Medical College, Wuhu, China,Shuzhi Zhong,
| |
Collapse
|