1
|
Li J, Ge Y, Chai Y, Kou C, Sun TT, Liu J, Zhang H. THSR Mediated MiR374b Targeting C/ EBP β/ FOXO1 to Accelerate Thyroid Stimulating Hormone-Induced Hepatic Steatosis. Hepat Med 2024; 16:91-104. [PMID: 39583015 PMCID: PMC11583786 DOI: 10.2147/hmer.s481687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose Thyroid-stimulating hormone (TSH) has been identified as an independent risk factor for non-alcoholic fatty liver disease (NAFLD), TSH binds to the TSH receptor (TSHR) to exert its function. However, the underlying mechanisms by which TSHR influences NAFLD development remain unclear. This study investigates the role of miR374b in NAFLD progression. Methods Firstly, a rat model of non-alcoholic fatty liver was constructed and divided into a normal group and a model group. The liver tissue pathology and fat accumulation were detected by Oil Red O staining and hematoxylin-eosin staining. Western blot and Real time PCR were used to detect for the impact of TSHR/miR-374b/C/EBP β/ FoxO1 pathway in the NAFLD model, and the expression of relevant inflammatory factors in each group was detected by ELISA assay. A NAFLD cell model was constructed using HepG2 cells, TSHR overexpression and interference, combined with miR-374b inhibitor and mimics, were transfected simultaneously to demonstrate TSHR/miR-374b/C/EBP β/ The mechanism of FoxO1 adipogenesis in vitro. Results TSHR stimulates miR374b secretion in human liver cancer cells (HepG2) and promotes lipid accumulation in the liver. Deficiency of miR374b in HepG2 cells attenuated NAFLD progression. Mechanistically, TSH increases miR374b expression, which then suppresses the transcription of its target genes, CCAAT/enhancer binding protein-b (C/EBP β) and Forkhead Box Protein O1 (FOXO1). This suppression influences the expression of downstream lipid metabolism proteins, including PPARγ, SREBP2, and SREBP1c. Additionally, miR374b directly targets the 3'UTR of C/EBP β and FOXO1, establishing a negative feedback loop in lipid metabolism. Conclusion These findings suggest that TSHR-induced upregulation of miR374b accelerates NAFLD progression by modulating lipid metabolism pathways through C/EBP β and FOXO1.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Yang Ge
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
| | - Tian Tian Sun
- Department of Infectious Diseases, Jinan People’s Hospital, Jinan, Shandong, 271100, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
2
|
Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 2024; 67:16018-16034. [PMID: 39269788 DOI: 10.1021/acs.jmedchem.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
TSHR is a member of the glycoprotein hormone receptors, a subfamily of class A G-protein-coupled receptors and plays pivotal roles in various physiological and pathological processes, particularly in thyroid growth and hormone production. The aberrant TSHR function has been implicated in several human diseases including Graves' disease and orbitopathy, nonautoimmune hyperthyroidism, hypothyroidism, cancer, neurological disorders, and osteoporosis. Consequently, TSHR is recognized as an attractive therapeutic target, and targeting TSHR with small-molecule modulators including agonists, antagonists, and inverse agonists offers great potential for drug discovery. In this perspective, we summarize the structures and biological functions of TSHR as well as the recent advances in the development of small-molecule TSHR modulators, highlighting their chemotypes, mode of actions, structure-activity relationships, characterizations, in vitro/in vivo activities, and therapeutic potential. The challenges, new opportunities, and future directions in this area are also discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Center for Structure & Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Jiang Z, Chen L, Huang H. Peptidomic profiling of endogenous peptides in the spleens of mouse models of Graves' disease. Heliyon 2024; 10:e36661. [PMID: 39295986 PMCID: PMC11408014 DOI: 10.1016/j.heliyon.2024.e36661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Graves' disease (GD) is a common autoimmune thyroid disorder. The pathogenesis of GD involves an autoimmune response to the A subunit of the human thyrotropin receptor (hTSHR), although the specific mechanisms are not fully elucidated. Methods This study established a GD model by immunizing BALB/c mice with a recombinant adenovirus expressing the hTSHR A subunit. Spleen tissues were collected and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed peptides (DEPs). Gene Ontology (GO) analysis and KEGG pathway analysis were further utilized to annotate the functions of these DEPs. Additionally, peptide bioactivity prediction and molecular docking studies were conducted using Alphafold and Pymol software, respectively, to assess the binding affinity of specific peptides to the hTSHR A subunit. Results The GD mouse model was successfully established, and 1,428 DEPs were identified in the spleen, with 368 upregulated and 1,060 downregulated. Functional analysis indicated that these DEPs are mainly involved in cellular endocytosis, regulation of gene expression, and nucleocytoplasmic transport. Notably, molecular docking studies revealed that the abnormally highly expressed peptide HG2A-24aa demonstrated potential bioactivity and strong binding affinity with hTSHR-289aa. Conclusion The specific bioactive peptides may play key roles in the pathogenesis of GD, particularly HG2A-24aa, which may have a significant role in the MHC II antigen presentation pathway mediated by the hTSHR A subunit.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lijun Chen
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Huibin Huang
- Department of Endocrinology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| |
Collapse
|
4
|
Zhao J, Tao Y. Adverse event reporting of the IGF-1R monoclonal antibody teprotumumab: a real-world study based on the US food and drug administration adverse event reporting system. Front Pharmacol 2024; 15:1393940. [PMID: 39185318 PMCID: PMC11341477 DOI: 10.3389/fphar.2024.1393940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Background Teprotumumab, an IGF-1R monoclonal antibody, has shown significant efficacy in treating thyroid eye disease (TED). However, since teprotumumab was launched in 2020 and first approved in the United States, there were limited reports of post-marketing adverse events (AEs). In this study, we aimed to mine and analyze the AEs signals with teprotumumab on the basis of the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) to provide instructions in clinical practice concerning adverse reactions and assistance in drug development and import/export into other countries. Methods All AE reports were obtained from the FAERS database from the first quarter of 2020 to the fourth quarter of 2023. To comprehensively analyze the AEs, we applied four disproportionality analysis algorithms, including the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms. Results A total of 687 reports from 200 patients related to administration of teprotumumab were obtained, and 78% of the cases was female. Signal detection of teprotumumab at the system organ class (SOC) level included gastrointestinal disorders, ear and labyrinth disorders, general disorders and administration site conditions, nervous system disorders, and musculoskeletal and connective tissue disorders. AEs that ranked top five at the preferred terms (PTs) level were muscle spasms, fatigue, tinnitus, headache, and deafness. The median time to those AEs onsets was 48 days (interquartile range 19.0-92.0 days) after administering drugs. Additionally, our results indicated the AEs in reproductive system and breast disorders because the prevalence of TED was more common in women. Conclusion This study identified many AEs associated with teprotumumab and unveiled potential new AE signals. These results can provide valuable evidence for further clinical application of teprotumumab and are important in enhancing clinical medication safety.
Collapse
Affiliation(s)
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Lee CE, Kim JY, Yoon JS, Ko J. Role of Inositol-Requiring Enzyme 1 and Autophagy in the Pro-Fibrotic Mechanism Underlying Graves' Orbitopathy. Yonsei Med J 2024; 65:397-405. [PMID: 38910302 PMCID: PMC11199180 DOI: 10.3349/ymj.2023.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Orbital fibroblasts play key roles in the pathogenesis of Graves' orbitopathy (GO), and previous findings have shown that endoplasmic reticulum (ER) stress and autophagy also contribute to GO. In this study, we investigated the presently unclear roles of inositol-requiring enzyme 1 (IRE1) and related autophagy processes in the pro-fibrotic mechanism of GO. MATERIALS AND METHODS Orbital adipose/connective tissues were obtained from eight GO patients and six normal individuals during surgery. GO fibroblasts were transfected with IRE1 small-interfering RNA and treated with bafilomycin A1 (Baf-A1) to evaluate the inhibitory effects of ER stress and autophagy, and protein-expression levels were analyzed through western blotting after stimulation with transforming growth factor (TGF)-β. RESULTS TGF-β stimulation upregulated IRE1 in GO orbital fibroblasts, whereas silencing IRE1 suppressed fibrosis and autophagy responses. Similarly, Baf-A1, an inhibitor of late-phase autophagy, decreased the expression of pro-fibrotic proteins. CONCLUSION IRE1 mediates autophagy and the pro-fibrotic mechanism of GO, which provides a more comprehensive interpretation of GO pathogenesis and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- Siloam Eye Hospital, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Buonfiglio F, Ponto KA, Pfeiffer N, Kahaly GJ, Gericke A. Redox mechanisms in autoimmune thyroid eye disease. Autoimmun Rev 2024; 23:103534. [PMID: 38527685 DOI: 10.1016/j.autrev.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting the orbit and the eye with its adnexa, often occurring as an extrathyroidal complication of Graves' disease (GD). Orbital inflammatory infiltration and the stimulation of orbital fibroblasts, triggering de novo adipogenesis, an overproduction of hyaluronan, myofibroblast differentiation, and eventual tissue fibrosis are hallmarks of the disease. Notably, several redox signaling pathways have been shown to intensify inflammation and to promote adipogenesis, myofibroblast differentiation, and fibrogenesis by upregulating potent cytokines, such as interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β. While existing treatment options can manage symptoms and potentially halt disease progression, they come with drawbacks such as relapses, side effects, and chronic adverse effects on the optic nerve. Currently, several studies shed light on the pathogenetic contributions of emerging factors within immunological cascades and chronic oxidative stress. This review article provides an overview on the latest advancements in understanding the pathophysiology of TED, with a special focus of the interplay between oxidative stress, immunological mechanisms and environmental factors. Furthermore, cutting-edge therapeutic approaches targeting redox mechanisms will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - George J Kahaly
- Medicine I (GJK), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Wu Y, Zhang J, Deng W, Mo C, Liang Y, Huang K, Xu F, Tang F. Comparison of orbital fibroblasts from Graves' ophthalmopathy and healthy control. Heliyon 2024; 10:e28397. [PMID: 38571651 PMCID: PMC10987992 DOI: 10.1016/j.heliyon.2024.e28397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Graves' ophthalmopathy (GO) is an extrathyroidal manifestation of Graves' disease, Orbital fibroblasts (OFs) are recognized as key players in GO pathogenesis, involved in orbital inflammation, tissue remodeling, and fibrosis. This study offers a primary exploration of cell behavior and characteristics on OFs from GO (GO-OFs), and compared to OFs from healthy control (HC-OFs). Results reveal that GO-OFs exhibit delayed migration from tissue fragments, while no significant difference in cell proliferation is observed between GO-OFs and HC-OFs. Aberrant expression pattern of surface proteins Thy-1, TSHR, and IGF-1R suggests shared autoantigens and pathways between GO and GD, contributing to inflammation and fibrosis. Investigations into cytokine responses unveil elevated secretion of hyaluronic acid (HA) and prostaglandin E2 (PGE2) in GO-OFs, emphasizing their role in tissue remodeling. These findings deepen our understanding of OFs in GO pathogenesis, offering potential therapeutic avenues.
Collapse
Affiliation(s)
- Yu Wu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Jiuming Zhang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Wen Deng
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Chaoting Mo
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- Youjiang Medical University for Nationalities, Baise, 531400, China
| | - Yumei Liang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- Guilin Medical University, Guilin, 541000, China
| | - Kongqian Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Fen Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
8
|
Cieplińska K, Niedziela E, Kowalska A. Immunological Processes in the Orbit and Indications for Current and Potential Drug Targets. J Clin Med 2023; 13:72. [PMID: 38202079 PMCID: PMC10780108 DOI: 10.3390/jcm13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid eye disease (TED) is an extrathyroidal manifestation of Graves' disease (GD). Similar to GD, TED is caused by an autoimmune response. TED is an autoimmune inflammatory disorder of the orbit and periorbital tissues, characterized by upper eyelid retraction, swelling, redness, conjunctivitis, and bulging eyes. The pathophysiology of TED is complex, with the infiltration of activated T lymphocytes and activation of orbital fibroblasts (OFs) and autoantibodies against the common autoantigen of thyroid and orbital tissues. Better understanding of the multifactorial pathogenesis of TED contributes to the development of more effective therapies. In this review, we present current and potential drug targets. The ideal treatment should slow progression of the disease with as little interference with patient immunity as possible. In the future, TED treatment will target the immune mechanism involved in the disease and will be based on a strategy of restoring tolerance to autoantigens.
Collapse
Affiliation(s)
| | - Emilia Niedziela
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| |
Collapse
|