1
|
Smith AD, Schwartzman G, Lyons CE, Flowers H, Albon D, Greer K, Lonabaugh K, Zlotoff BJ. Cutaneous manifestations of cystic fibrosis. J Am Acad Dermatol 2024; 91:490-498. [PMID: 38697219 DOI: 10.1016/j.jaad.2024.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Cystic fibrosis (CF) is caused by a mutation in the Cystic fibrosis transmembrane conductance regulator (CFTR) gene, and features recurrent sinus and pulmonary infections, steatorrhea, and malnutrition. CF is associated with diverse cutaneous manifestations, including transient reactive papulotranslucent acrokeratoderma of the palms, nutrient deficiency dermatoses, and vasculitis. Rarely these are presenting symptoms of CF, prior to pulmonary or gastrointestinal sequelae. Cutaneous drug eruptions are also highly common in patients with CF (PwCF) given frequent antibiotic exposure. Finally, CFTR modulating therapy, which has revolutionized CF management, is associated with cutaneous side effects ranging from acute urticaria to toxic epidermal necrolysis. Recognition of dermatologic clinical manifestations of CF is important to appropriately care for PwCF. Dermatologists may play a significant role in the diagnosis and management of CF and associated skin complications.
Collapse
Affiliation(s)
- Aaron D Smith
- University of Virginia School of Medicine, Charlottesville, Virginia.
| | | | - Catherine E Lyons
- University of Virginia School of Medicine, Charlottesville, Virginia
| | - Hal Flowers
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| | - Dana Albon
- Department of Pulmonology and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Kenneth Greer
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| | - Kevin Lonabaugh
- Department of Pulmonology and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Barrett J Zlotoff
- Department of Dermatology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
2
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Schnell A, Tamm S, Hedtfeld S, Rodriguez Gonzalez C, Hoerning A, Lachmann N, Stanke F, Dittrich AM, Munder A. Analysis of CFTR mRNA and Protein in Peripheral Blood Mononuclear Cells via Quantitative Real-Time PCR and Western Blot. Int J Mol Sci 2024; 25:6367. [PMID: 38928073 PMCID: PMC11203434 DOI: 10.3390/ijms25126367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Cystic Fibrosis Conductance Transmembrane Regulator gene encodes for the CFTR ion channel, which is responsible for the transport of chloride and bicarbonate across the plasma membrane. Mutations in the gene result in impaired ion transport, subsequently leading to perturbed secretion in all exocrine glands and, therefore, the multi-organ disease cystic fibrosis (CF). In recent years, several studies have reported on CFTR expression in immune cells as demonstrated by immunofluorescence, flow cytometry, and immunoblotting. However, these data are mainly restricted to single-cell populations and show significant variation depending on the methodology used. Here, we investigated CFTR transcription and protein expression using standardized protocols in a comprehensive panel of immune cells. Methods: We applied a high-resolution Western blot protocol using a combination of highly specific monoclonal CFTR antibodies that have been optimized for the detection of CFTR in epithelial cells and healthy primary immune cell subpopulations sorted by flow cytometry and used immortalized cell lines as controls. The specificity of CFTR protein detection was controlled by peptide competition and enzymatic Peptide-N-Glycosidase-F (PNGase) digest. CFTR transcripts were analyzed using quantitative real-time PCR and normalized to the level of epithelial T84 cells as a reference. Results: CFTR mRNA expression could be shown for primary CD4+ T cells, NK cells, as well as differentiated THP-1 and Jurkat T cells. In contrast, we failed to detect CFTR transcripts for CD14+ monocytes and undifferentiated THP-1 cells, as well as for B cells and CD8+ T cells. Prominent immunoreactive bands were detectable by immunoblotting with the combination of four CFTR antibodies targeting different epitopes of the CFTR protein. However, in biosamples of non-epithelial origin, these CFTR-like protein bands could be unmasked as false positives through peptide competition or PNGase digest, meaning that the observed mRNA transcripts were not necessarily translated into CFTR proteins, which could be detected via immunoblotting. Our results confirm that mRNA expression in immune cells is many times lower than in that cells of epithelial origin. The immunoreactive signals in immune cells turned out to be false positives, and may be provoked by the presence of a high-affinity protein with a similar epitope. Non-specific binding (e.g., Fab-interaction with glycosyl branches) might also contribute to false positive signals. Our findings highlight the necessity of accurate controls, such as CFTR-negative cells, as well as peptide competition and glycolytic digest in order to identify genuine CFTR protein by immunoblotting. Our data suggest, furthermore, that CFTR protein expression data from techniques such as histology, for which the absence of a molecular weight or other independent control prevents the unmasking of false positive immunoreactive signals, must be interpreted carefully as well.
Collapse
Affiliation(s)
- Alexander Schnell
- Department of Pediatric and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Hedtfeld
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
| | - Claudio Rodriguez Gonzalez
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Hoerning
- Department of Pediatric and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Schuler M, Cuppens K, Plönes T, Wiesweg M, Du Pont B, Hegedus B, Köster J, Mairinger F, Darwiche K, Paschen A, Maes B, Vanbockrijck M, Lähnemann D, Zhao F, Hautzel H, Theegarten D, Hartemink K, Reis H, Baas P, Schramm A, Aigner C. Neoadjuvant nivolumab with or without relatlimab in resectable non-small-cell lung cancer: a randomized phase 2 trial. Nat Med 2024; 30:1602-1611. [PMID: 38689060 PMCID: PMC11186754 DOI: 10.1038/s41591-024-02965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Nivolumab/therapeutic use
- Nivolumab/administration & dosage
- Female
- Male
- Middle Aged
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Neoadjuvant Therapy
- Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Lymphocyte Activation Gene 3 Protein
- Adult
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antigens, CD
- Aged, 80 and over
Collapse
Affiliation(s)
- Martin Schuler
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany.
- Medical Faculty, University Duisburg-Essen, Essen, Germany.
- National Center for Tumor Diseases (NCT) West, Essen, Germany.
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology, and Jessa and Science, Jessa Hospital, Hasselt, Belgium.
- Faculty of Medicine and Life Sciences LCRC, UHasselt, Diepenbeek, Belgium.
| | - Till Plönes
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, Essen, Germany
- University Hospital Carl Gustav Carus, Department of Surgery, Division of Thoracic Surgery, Technical University Dresden, Dresden, Germany
| | - Marcel Wiesweg
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
| | - Bert Du Pont
- Department of Thoracic and Vascular Surgery, Jessa Hospital, Hasselt, Belgium
| | - Balazs Hegedus
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, Essen, Germany
| | - Johannes Köster
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
- Bioinformatics and Computational Oncology, Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Fabian Mairinger
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Institute for Pathology, University Hospital Essen, Essen, Germany
| | - Kaid Darwiche
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
- West German Cancer Center, Department of Pulmonary Medicine, University Medicine Essen - Ruhrlandklinik, Essen, Germany
| | - Annette Paschen
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Brigitte Maes
- Laboratory Medicine Department, Laboratory for Molecular Diagnostics, Jessa Hospital, Hasselt, Belgium
| | | | - David Lähnemann
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- Bioinformatics and Computational Oncology, Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Fang Zhao
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Hubertus Hautzel
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- National Center for Tumor Diseases (NCT) West, Essen, Germany
- West German Cancer Center, Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Dirk Theegarten
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Institute for Pathology, University Hospital Essen, Essen, Germany
| | - Koen Hartemink
- Department of Surgery, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Henning Reis
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Institute for Pathology, University Hospital Essen, Essen, Germany
- University Hospital Frankfurt, Dr Senckenberg Institute of Pathology, Goethe University, Frankfurt, Germany
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Alexander Schramm
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
- Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Medical Faculty, University Duisburg-Essen, Essen, Germany
- West German Cancer Center, Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, Essen, Germany
- General Hospital Vienna, Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| |
Collapse
|
5
|
Jarosz-Griffiths HH, Gillgrass L, Caley LR, Spoletini G, Clifton IJ, Etherington C, Savic S, McDermott MF, Peckham D. Anti-inflammatory effects of elexacaftor/tezacaftor/ivacaftor in adults with cystic fibrosis heterozygous for F508del. PLoS One 2024; 19:e0304555. [PMID: 38820269 PMCID: PMC11142445 DOI: 10.1371/journal.pone.0304555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Inflammation is a key driver in the pathogenesis of cystic fibrosis (CF). We assessed the effectiveness of elexacaftor/tezacaftor/ivacaftor (ETI) therapy on downregulating systemic and immune cell-derived inflammatory cytokines. We also monitored the impact of ETI therapy on clinical outcome. Adults with CF, heterozygous for F508del (n = 19), were assessed at baseline, one month and three months following ETI therapy, and clinical outcomes were measured, including sweat chloride, lung function, weight, neutrophil count and C-reactive protein (CRP). Cytokine quantifications were measured in serum and following stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) and adenosine triphosphate and analysed using LEGEND plex™ Human Inflammation Panel 1 by flow cytometry (n = 19). ASC specks were measured in serum and caspase-1 activity and mRNA levels determined from stimulated PBMCs were determined. Patients remained stable over the study period. ETI therapy resulted in decreased sweat chloride concentrations (p < 0.0001), CRP (p = 0.0112) and neutrophil count (p = 0.0216) and increased percent predicted forced expiratory volume (ppFEV1) (p = 0.0399) from baseline to three months, alongside a trend increase in weight. Three months of ETI significantly decreased IL-18 (p< 0.0011, p < 0.0001), IL-1β (p<0.0013, p = 0.0476), IL-6 (p = 0.0109, p = 0.0216) and TNF (p = 0.0028, p = 0.0033) levels in CF serum and following PBMCs stimulation respectively. The corresponding mRNA levels were also found to be reduced in stimulated PBMCs, as well as reduced ASC specks and caspase-1 levels, indicative of NLRP3-mediated production of pro-inflammatory cytokines, IL-1β and IL-18. While ETI therapy is highly effective at reducing sweat chloride and improving lung function, it also displays potent anti-inflammatory properties, which are likely to contribute to improved long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Lindsey Gillgrass
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Laura R. Caley
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Giulia Spoletini
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | - Ian J. Clifton
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| | | | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Michael F. McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
- Adult Cystic Fibrosis Unit, St James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
6
|
Westhölter D, Pipping J, Raspe J, Schmitz M, Sutharsan S, Straßburg S, Welsner M, Taube C, Reuter S. Plasma levels of chemokines decrease during elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. Heliyon 2024; 10:e23428. [PMID: 38173511 PMCID: PMC10761561 DOI: 10.1016/j.heliyon.2023.e23428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Background Cystic fibrosis (CF) is associated with dysregulated immune responses, exaggerated inflammation and chronic infection. CF transmembrane conductance regulator (CFTR) modulator therapies directly target the underlying protein defects and resulted in significant clinical benefits for people with CF (pwCF). This study analysed the effects of triple CFTR modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) on CF-associated inflammation, especially systemic chemokines. Methods A bead-based immunoassay was used to quantify proinflammatory chemokines (IL-8, IP-10, Eotaxin, TARC, RANTES, MIP-1α, MIP-1β, MIP-3α, MIG, ENA-78, GROα, I-TAC) in plasma samples from pwCF collected before, at three, and at six months after starting ETI therapy. Results Fifty-one pwCF (47 % female; mean age 32 ± 10.4 years) were included. At baseline, 67 % were already receiving CFTR modulator therapy with tezacaftor/ivacaftor or lumacaftor/ivacaftor. After initiation of ETI therapy there was a significant improvement in percent predicted forced expiratory volume in 1 s (+12.7 points, p < 0.001) and a significant decrease in sweat chloride levels (-53.6 %, p < 0.001). After 6 months' treatment with ETI therapy there were significant decreases in plasma levels of MIP-3α (-68.2 %, p = 0.018), GROα (-17.7 %, p = 0.013), ENA-78 (-16.3 %, p = 0.034) and I-TAC (-3.4 %, p = 0.032). IL-8 exhibited a reduction that did not reach statistical significance (-17.8 %, p = 0.057); levels of other assessed cytokines did not change significantly from baseline. Conclusions ETI appears to affect a distinct group of chemokines that are predominately associated with neutrophilic inflammation, demonstrating the anti-inflammatory properties of ETI therapy.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Cystic Fibrosis Unit, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
7
|
Lindsay S, Larry B, Imre N, Dana A. Modulator-refractory cystic fibrosis: Defining the scope and challenges of an emerging at-risk population. Ther Adv Respir Dis 2024; 18:17534666241297877. [PMID: 39543951 PMCID: PMC11565698 DOI: 10.1177/17534666241297877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Cystic fibrosis (CF) causes life-shortening respiratory and systemic disease due to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Highly effective modulator therapies (HEMT) improve the lives of many people with cystic fibrosis (PwCF) by correcting the structure and function of the defective CFTR channel at the molecular level. Despite these advancements, a subset of patients-termed modulator-refractory CF-continues to experience two or more pulmonary exacerbations per year requiring hospitalization or intravenous antibiotics, regardless of other modulator benefits. This underrecognized group represents an emerging challenge within the CF community. We discuss the benefits and limitations of current CFTR modulator therapies and the urgent need to investigate this emerging at-risk population. While HEMT improves lung function, decreases exacerbations, reduces the need for lung transplantation, and lowers mortality, increasing evidence shows that not all patients benefit equally. At the University of Virginia, nearly 6% of adults with CF exhibit the modulator-refractory phenotype. The driving factors of modulator-refractory CF are likely multifactorial, including genetic variations, variable immune responses, preexisting bronchiectasis, microbiological colonization, preexisting comorbid conditions, and environmental and socioeconomic factors. This perspective review recognizes and defines modulator-refractory CF as a distinct emerging clinical phenotype in the post-modulator era. Understanding this phenotype is crucial for reducing morbidity and mortality, and for improving the quality of life for PwCF. Raising awareness of modulator-refractory CF will help the community address this population and perform further research to identify causes. The emergence of modulator-refractory CF highlights a significant gap in our current treatment landscape and provides an opportunity to develop innovative therapeutic strategies that may benefit the entire CF community, ensuring that no person with CF is left behind.
Collapse
Affiliation(s)
| | - Borish Larry
- University of Virginia, Charlottesville, VA, USA
| | - Noth Imre
- University of Virginia, Charlottesville, VA, USA
| | - Albon Dana
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Arslan M, Bahadir Z, Basiaga ML, Chalmers SJ, Demirel N. A pediatric cystic fibrosis arthropathy case who responded to Elexacaftor/Tezacaftor/Ivacaftor therapy. J Cyst Fibros 2023; 22:1120-1122. [PMID: 37709627 DOI: 10.1016/j.jcf.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Cystic fibrosis arthropathy (CFA) is a transient, intermittent form of arthritis that cannot be associated with any other disease other than CF thus making CFA a diagnosis of exclusion. NSAIDs, short-term intermittent splinting, glucocorticoids, and disease-modifying anti-rheumatic drugs are treatment options for CFA. Currently, there is no consensus on how to best treat CFA. Diagnosis and treatment of CFA remain a challenge for physicians and people with CF. The newest CFTR modulator therapy, elexacaftor/tezacaftor/ivacaftor (ETI), was approved by the FDA recently for children over the age of 6 with at least one Phe508del allele in the CFTR gene. Multiple clinical benefits of ETI in pulmonary functions and overall disease burden have been reported since its approval, however, the data on the musculoskeletal therapeutic benefits of ETI has been limited. In this report, we present a 7-year-old female with CF whose CFA symptoms resolved after starting ETI therapy.
Collapse
Affiliation(s)
| | - Zeynep Bahadir
- Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Matthew L Basiaga
- Mayo Clinic, Department of Pediatric and Adolescent Medicine, Division of Pediatric Rheumatology, Rochester, MN, United States of America
| | - Sarah J Chalmers
- Mayo Clinic, Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Rochester, MN, United States of America
| | - Nadir Demirel
- Mayo Clinic, Department of Pediatric and Adolescent Medicine, Division of Pediatric Pulmonology, Rochester, MN, United States of America
| |
Collapse
|
9
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|