1
|
Holmström MO, Ruders JH, Riley CH, Larsen MK, Grauslund JH, Kjær L, Skov V, Ellervik C, Guo BB, Linden M, Hasselbalch HC, Andersen MH. The CALR mutations enhance the expression of the immunosuppressive proteins GARP and LAP on peripheral blood lymphocytes through increased binding of activated platelets. Br J Haematol 2024; 205:1417-1429. [PMID: 39161981 DOI: 10.1111/bjh.19711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Recently, an antibody which inhibits the glycoprotein A repetitions predominant (GARP)-mediated release of active transforming growth factor beta (TGFβ) from the TGFβ propeptide latency-associated peptide (LAP) showed preclinical activity in a murine model of the chronic myeloproliferative neoplasms (MPN). Consequently, we investigated the expression of the immunosuppressive molecules LAP and GARP on peripheral blood lymphocytes from 56 MPN patients and 11 healthy donors (HD). We found that lymphocytes from patients with MPN express higher levels of LAP and GARP with no strong differences found between the different MPN diagnoses. The impact of clinical parameters on the expression of LAP and GARP by lymphocytes showed that patients with calreticulin (CALR)mut MPN have increased expression compared with HD and patients with the Januskinase2 (JAK2) mutation. The fraction of lymphocytes bound to activated platelets (aPLT) strongly correlate to LAP and GARP expression suggesting that it is not the lymphocytes themselves but aPLT, which confer the increased expression of GARP and LAP on MPN patient lymphocytes. Notably, no differences in neither platelet counts nor anti-thrombotic therapy was identified between patients with JAK2- and CALRmut patients. Analysis of platelet gene expression failed to identify differences in expression of relevant genes between JAK2- and CALRmut patients.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Josephine Hallundbæk Ruders
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | | | | | - Jacob Handlos Grauslund
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Biochemistry, Zealand University Hospital, Koege, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda B Guo
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew Linden
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
3
|
Glöckner HJ, Martinenaite E, Landkildehus Lisle T, Grauslund J, Ahmad S, Met Ö, Thor Straten P, Hald Andersen M. Arginase-1 specific CD8+ T cells react toward malignant and regulatory myeloid cells. Oncoimmunology 2024; 13:2318053. [PMID: 38404966 PMCID: PMC10885169 DOI: 10.1080/2162402x.2024.2318053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Arginase-1 (Arg1) is expressed by regulatory myeloid cells in the tumor microenvironment (TME), where they play a pro-tumorigenic and T-cell suppressive role. Arg1-specific CD4+ and CD8+ memory T cells have been observed in both healthy individuals and cancer patients. However, while the function of anti-regulatory Arg1-specific CD4+ T cells has been characterized, our knowledge of CD8+ Arg1-specific T cells is only scarce. In the current study, we describe the immune-modulatory capabilities of CD8+ Arg1-specific T cells. We generated CD8+ Arg1-specific T cell clones to target Arg1-expressing myeloid cells. Our results demonstrate that these T cells recognize both malignant and nonmalignant regulatory myeloid cells in an Arg1-expression-dependent manner. Notably, Arg1-specific CD8+ T cells possess cytolytic effector capabilities. Immune modulatory vaccines (IMVs) represent a novel treatment modality for cancer. The activation of Arg1-specific CD8+ T cells through Arg1-based IMVs can contribute to the modulatory effects of this treatment strategy.
Collapse
Affiliation(s)
- Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech, Research and Development Department, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Jacob Grauslund
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shamaila Ahmad
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, CCIT-DK, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
4
|
Mahdi D, Spiers J, Rampotas A, Polverelli N, McLornan DP. Updates on accelerated and blast phase myeloproliferative neoplasms: Are we making progress? Br J Haematol 2023; 203:169-181. [PMID: 37527977 DOI: 10.1111/bjh.19010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Management approaches for accelerated and blast phase myeloproliferative neoplasms remain challenging for clinicians and patients alike. Despite many therapeutic advances, outcomes for those patients who are not allogeneic haematopoietic cell transplant eligible remain, in general, very poor. Estimated survival rates for such blast phase patients is frequently reported as less than 6 months. No specific immunological, genomic or clinicopathological signature currently exists that accurately predicts the risk and timing of transformation, which frequently induces a high degree of anxiety among patients and clinicians alike. Within this review article, we provide an up-to-date summary of current understanding of the underlying pathogenesis of accelerated and blast phase disease and discuss current therapeutic approaches and realistic outcomes. Finally, we discuss how the horizon may look with the introduction of more novel agents into the clinical arena.
Collapse
Affiliation(s)
- Dina Mahdi
- Department of Haematology, University College Hospital, London, UK
| | - Jessica Spiers
- Department of Haematology, University College Hospital, London, UK
| | | | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Donal P McLornan
- Department of Haematology, University College Hospital, London, UK
| |
Collapse
|
5
|
Hasselbalch HC, Junker P, Skov V, Kjær L, Knudsen TA, Larsen MK, Holmström MO, Andersen MH, Jensen C, Karsdal MA, Willumsen N. Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms. Cancers (Basel) 2023; 15:4323. [PMID: 37686599 PMCID: PMC10486581 DOI: 10.3390/cancers15174323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10-30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation-"a wound that never heals"-we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, 5000 Odense, Denmark;
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Trine A. Knudsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Christina Jensen
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | - Morten A. Karsdal
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | | |
Collapse
|