1
|
Zhang H, Liu Z, Li Y, Tao Z, Shen L, Shang Y, Huang X, Liu Q. Adjuvants for Helicobacter pylori vaccines: Outer membrane vesicles provide an alternative strategy. Virulence 2024:2425773. [PMID: 39501551 DOI: 10.1080/21505594.2024.2425773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that colonizes the human stomach, leading to various gastric diseases. The efficacy of traditional treatments, such as bismuth-based triple and quadruple therapies, has reduced due to increasing antibiotic resistance and drug toxicity. As a result, the development of effective vaccines was proposed to control H. pylori-induced infections; however, one of the primary challenges is the lack of potent adjuvants. Although various adjuvants, both toxic (e.g. cholera toxin and Escherichia coli heat-labile toxin) and non-toxic (e.g. aluminium and propolis), have been tested for vaccine development, no clinically favourable adjuvants have been identified due to high toxicity, weak immunostimulatory effects, inability to elicit specific immune responses, or latent side effects. Outer membrane vesicles (OMVs), mainly secreted by gram-negative bacteria, have emerged as promising candidates for H. pylori vaccine adjuvants due to their potential applications. OMVs enhance mucosal immunity and Th1 and Th17 cell responses, which have been recognized to have protective effects and guarantee safety and efficacy. The development of an effective vaccine against H. pylori infection is ongoing, with clinical trials expected in the future.
Collapse
Affiliation(s)
- Hanchi Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Shen
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinpan Shang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Hossain MJ, Svennerholm AM, Carlin N, D’Alessandro U, Wierzba TF. A Perspective on the Strategy for Advancing ETVAX ®, An Anti-ETEC Diarrheal Disease Vaccine, into a Field Efficacy Trial in Gambian Children: Rationale, Challenges, Lessons Learned, and Future Directions. Microorganisms 2023; 12:90. [PMID: 38257916 PMCID: PMC10819518 DOI: 10.3390/microorganisms12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
For the first time in over 20 years, an Enterotoxigenic Escherichia coli (ETEC) vaccine candidate, ETVAX®, has advanced into a phase 2b field efficacy trial for children 6-18 months of age in a low-income country. ETVAX® is an inactivated whole cell vaccine that has gone through a series of clinical trials to provide a rationale for the design elements of the Phase 2b trial. This trial is now underway in The Gambia and will be a precursor to an upcoming pivotal phase 3 trial. To reach this point, numerous findings were brought together to define factors such as safe and immunogenic doses for children, and the possible benefit of a mucosal adjuvant, double mutant labile toxin (dmLT). Considering the promising but still underexplored potential of inactivated whole cells in oral vaccination, we present a perspective compiling key observations from past ETVAX® trials that informed The Gambian trial design. This report will update the trial's status and explore future directions for ETEC vaccine trials. Our aim is to provide not only an update on the most advanced ETEC vaccine candidate but also to offer insights beneficial for the development of other much-needed oral whole-cell vaccines against enteric and other pathogens.
Collapse
Affiliation(s)
- M. Jahangir Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Gothenburg University Research Institute (GUVAX), Gothenburg University, 40530 Gothenburg, Sweden
| | - Nils Carlin
- Scandinavian Biopharma, Industrivägen 1, 17148 Solna, Sweden
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia
| | - Thomas F. Wierzba
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
4
|
Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants. Curr Opin Immunol 2023; 85:102398. [PMID: 37976963 PMCID: PMC11258862 DOI: 10.1016/j.coi.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Enterotoxin adjuvants have been researched for their ability to promote immunity to co-delivered antigens. Outside of cholera vaccines, however, these proteins have yet to be included in any currently licensed vaccines. They include molecules derived from the bacterial toxins of Vibrio cholerae, cholera toxin, or Escherichia coli, heat-labile toxin, such as detoxified mutants or subunits. This class of adjuvants is distinguished by their delivery possibilities, which include parenteral injection, skin applications, or direct mucosal administration by oral, sublingual, or nasal routes. In addition, inclusion of an enterotoxin adjuvant is associated with development of multifaceted cellular and humoral immune responses to vaccination. Here, we review exciting progress in the past few years in clinical trials for safety and efficacy, preclinical vaccines studies, and new mechanistic insights for enterotoxin adjuvants. This includes recent reports of their use in vaccines targeting microbial infections (bacterial, viral, parasitic) or substance abuse drugs.
Collapse
Affiliation(s)
- Jessica W Crothers
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | |
Collapse
|
5
|
Maier N, Grahek SL, Halpern J, Restrepo S, Troncoso F, Shimko J, Torres O, Belkind-Gerson J, Sack DA, Svennerholm AM, Gustafsson B, Sjöstrand B, Carlin N, Bourgeois AL, Porter CK. Efficacy of an Enterotoxigenic Escherichia coli (ETEC) Vaccine on the Incidence and Severity of Traveler's Diarrhea (TD): Evaluation of Alternative Endpoints and a TD Severity Score. Microorganisms 2023; 11:2414. [PMID: 37894071 PMCID: PMC10609384 DOI: 10.3390/microorganisms11102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The efficacy of an Oral Whole Cell ETEC Vaccine (OEV) against Travelers' Diarrhea (TD) was reexamined using novel outcome and immunologic measures. More specifically, a recently developed disease severity score and alternative clinical endpoints were evaluated as part of an initial validation effort to access the efficacy of a vaccine intervention for the first time in travelers to an ETEC endemic area. A randomized, double-blind, placebo-controlled trial followed travelers to Guatemala or Mexico up to 28 days after arrival in the country following vaccination (two doses two weeks apart) with an ETEC vaccine. Fecal samples were collected upon arrival, departure, and during TD for pathogen identification. Serum was collected in a subset of subjects to determine IgA cholera toxin B subunit (CTB) antibody titers upon their arrival in the country. The ETEC vaccine's efficacy, utilizing a TD severity score and other alternative endpoints, including the relationship between antibody levels and TD risk, was assessed and compared to the per-protocol primary efficacy endpoint. A total of 1435 subjects completed 7-28 days of follow-up and had available data. Vaccine efficacy was higher against more severe (≥5 unformed stools/24 h) ETEC-attributable TD and when accounting for immunologic take (PE ≥ 50%; p < 0.05). The vaccine protected against less severe (3 and 4 unformed stools/24 h) ETEC-attributable TD when accounting for symptom severity or change in activity (PE = 76.3%, p = 0.01). Immunologic take of the vaccine was associated with a reduced risk of infection with ETEC and other enteric pathogens, and with lower TD severity. Clear efficacy was observed among vaccinees with a TD score of ≥4 or ≥5, regardless of immunologic take (PE = 72.0% and 79.0%, respectively, p ≤ 0.03). The vaccine reduced the incidence and severity of ETEC, and this warrants accelerated evaluation of the improved formulation (designated ETVAX), currently undergoing advanced field testing. Subjects with serum IgA titers to CTB had a lower risk of infection with ETEC and Campylobacter jejuni/coli. Furthermore, the TD severity score provided a more robust descriptor of disease severity and should be included as an endpoint in future studies.
Collapse
Affiliation(s)
| | - Shannon L. Grahek
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Jane Halpern
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Suzanne Restrepo
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Felipe Troncoso
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Janet Shimko
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Olga Torres
- Laboratorio Diagnostico Molecular, Guatemala City 01009, Guatemala;
| | | | - David A. Sack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (S.L.G.); (J.H.); (S.R.); (F.T.); (J.S.); (D.A.S.)
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Björn Gustafsson
- Scandinavian Biopharma Holding AB, 171 48 Stockholm, Sweden (B.S.); (N.C.)
| | - Björn Sjöstrand
- Scandinavian Biopharma Holding AB, 171 48 Stockholm, Sweden (B.S.); (N.C.)
| | - Nils Carlin
- Scandinavian Biopharma Holding AB, 171 48 Stockholm, Sweden (B.S.); (N.C.)
| | | | - Chad K. Porter
- Naval Medical Research Command, Silver Spring, MD 20910, USA;
| |
Collapse
|