1
|
Wu Y, Zhao N, Jiang Y, Zheng X, Yu T, Yan F. Positive effects of yeast soluble cell wall polysaccharide on fruit postharvest control through resistance response. Int J Biol Macromol 2024; 281:136003. [PMID: 39443171 DOI: 10.1016/j.ijbiomac.2024.136003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Yeast-derived cell wall polysaccharides possess numerous biological activities, but their application in postharvest preservation is rarely reported. The aim of this research was to investigate the effects of Kluyveromyces marxianus soluble cell wall polysaccharide (SCWP) on preventing the infection of Penicillium expansum in pear fruit. The results showed that K. marxianus SCWP treatment could significantly improve the resistance of pear fruit to P. expansum, with respect to Saccharomyces cerevisiae-derived SCWP. Composition of both SCWPs was mannan with the main chains consisting of a → 6)-α-D-Manp-(1 → unit and the branch structure formed by → 2)-α-D-Manp-(1 except that K. marxianus SCWP took on a shorter side chain and a rougher surface than S. cerevisiae SCWP. In addition, mechanisms of K. marxianus SCWP on stimulating resistance response were associated with the apparent oxidative burst, increased gene expression and enzyme activity of antioxidant and defense systems in pear fruit. Our findings suggest that K. marxianus SCWP can be used as an innovative and promising candidate for preventing postharvest fungal decay and extending fruit shelf life.
Collapse
Affiliation(s)
- Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiwei Jiang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sultana S, Biró J, Kucska B, Hancz C. Factors Affecting Yeast Digestibility and Immunostimulation in Aquatic Animals. Animals (Basel) 2024; 14:2851. [PMID: 39409800 PMCID: PMC11475639 DOI: 10.3390/ani14192851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The aquafeed industry increasingly relies on using sustainable and appropriate protein sources to ensure the long-term sustainability and financial viability of intensive aquaculture. Yeast has emerged as a viable substitute protein source in the aquaculture sector due to its potential as a nutritional supplement. A substantial body of evidence exists to suggest that yeast has the potential to act as an effective immune-stimulating agent for a range of aquaculture fish species. Furthermore, the incorporation of yeast supplements and feed additives has the potential to bolster disease prevention, development, and production within the aquaculture sector. Except for methionine, lysine, arginine, and phenylalanine, which are typically the limiting essential amino acids in various fish species, the various yeast species exhibit amino acid profiles that are advantageous when compared to fishmeal. The present review considers the potential nutritional suitability of several yeast species for fish, with particular attention to the various applications of yeast in aquaculture nutrition. The findings of this study indicate that the inclusion of yeast in the diet resulted in the most favorable outcomes, with improvements observed in the overall health, growth performance, and nutritional condition of the fish. Digestibility, a key factor in sustainable feed development, is discussed in special detail. Additionally, this review addresses the utilization of yeast as an immunostimulating agent for fish and its digestion in fish. Furthermore, the research emphasizes the necessity of large-scale production of yeast as a substitute for fishmeal in aquaculture.
Collapse
Affiliation(s)
- Sadia Sultana
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Janka Biró
- Research Center for Fisheries and Aquaculture, Hungarian University of Agriculture and Life Sciences, Anna-liget u. 35, 5540 Szarvas, Hungary
| | - Balázs Kucska
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| | - Csaba Hancz
- Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba S. 40., 7400 Kaposvár, Hungary; (S.S.)
| |
Collapse
|
3
|
Dong W, Li Y, Xue S, Wen F, Meng D, Zhang Y, Yang R. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials. Compr Rev Food Sci Food Saf 2024; 23:e70003. [PMID: 39223755 DOI: 10.1111/1541-4337.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Yeast cell wall (YCW) polysaccharides, including β-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shurong Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
4
|
Zhang M, Zhao X, Li Y, Ye Q, Wu Y, Niu Q, Zhang Y, Fan G, Chen T, Xia J, Wu Q. Advances in serum-free media for CHO cells: From traditional serum substitutes to microbial-derived substances. Biotechnol J 2024; 19:e2400251. [PMID: 39031790 DOI: 10.1002/biot.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
The Chinese hamster ovary (CHO) cell is an epithelial-like cell that produces proteins with post-translational modifications similar to human glycosylation. It is widely used in the production of recombinant therapeutic proteins and monoclonal antibodies. Culturing CHO cells typically requires the addition of a certain proportion of fetal bovine serum (FBS) to maintain cell proliferation and passaging. However, serum is characterized by its complex composition, batch-to-batch variability, high cost, and potential risk of exogenous contaminants such as mycoplasma and viruses, which impact the purity and safety of the synthesized proteins. Therefore, search for serum alternatives and development of serum-free media for CHO-based protein biomanufacturing are of great significance. This review systematically summarizes the application advantages of CHO cells and strategies for high-density expression. It highlights the developmental trends of serum substitutes from human platelet lysates to animal-free extracts and microbial-derived substances and elucidates the mechanisms by which these substitutes enhance CHO cell culture performance and recombinant protein production, aiming to provide theoretical guidance for exploring novel serum alternatives and developing serum-free media for CHO cells.
Collapse
Affiliation(s)
- Mingcan Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiarui Xia
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Han B, Yue F, Zhang X, Xu K, Zhang Z, Sun Z, Mu L, Li X. Genetically engineering of Saccharomyces cerevisiae for enhanced oral delivery vaccine vehicle. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109425. [PMID: 38316348 DOI: 10.1016/j.fsi.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Lu Mu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Bzducha-Wróbel A, Farkaš P, Bieliková S, Čížová A, Sujkowska-Rybkowska M. How do the carbon and nitrogen sources affect the synthesis of β-(1,3/1,6)-glucan, its structure and the susceptibility of Candida utilis yeast cells to immunolabelling with β-(1,3)-glucan monoclonal antibodies? Microb Cell Fact 2024; 23:28. [PMID: 38243245 PMCID: PMC10799355 DOI: 10.1186/s12934-024-02305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The need to limit antibiotic therapy due to the spreading resistance of pathogenic microorganisms to these medicinal substances stimulates research on new therapeutic agents, including the treatment and prevention of animal diseases. This is one of the goals of the European Green Deal and the Farm-To-Fork strategy. Yeast biomass with an appropriate composition and exposure of cell wall polysaccharides could constitute a functional feed additive in precision animal nutrition, naturally stimulating the immune system to fight infections. RESULTS The results of the research carried out in this study showed that the composition of Candida utilis ATCC 9950 yeast biomass differed depending on growth medium, considering especially the content of β-(1,3/1,6)-glucan, α-glucan, and trehalose. The highest β-(1,3/1,6)-glucan content was observed after cultivation in deproteinated potato juice water (DPJW) as a nitrogen source and glycerol as a carbon source. Isolation of the polysaccharide from yeast biomass confirmed the highest yield of β-(1,3/1,6)-glucan after cultivation in indicated medium. The differences in the susceptibility of β-(1,3)-glucan localized in cells to interaction with specific β-(1,3)-glucan antibody was noted depending on the culture conditions. The polymer in cells from the DPJW supplemented with glycerol and galactose were labelled with monoclonal antibodies with highest intensity, interestingly being less susceptible to such an interaction after cell multiplication in medium with glycerol as carbon source and yeast extract plus peptone as a nitrogen source. CONCLUSIONS Obtained results confirmed differences in the structure of the β-(1,3/1,6)-glucan polymers considering side-chain length and branching frequency, as well as in quantity of β-(1,3)- and β-(1,6)-chains, however, no visible relationship was observed between the structural characteristics of the isolated polymers and its susceptibility to immunolabeling in whole cells. Presumably, other outer surface components and molecules can mask, shield, protect, or hide epitopes from antibodies. β-(1,3)-Glucan was more intensely recognized by monoclonal antibody in cells with lower trehalose and glycogen content. This suggests the need to cultivate yeast biomass under appropriate conditions to fulfil possible therapeutic functions. However, our in vitro findings should be confirmed in further studies using tissue or animal models.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland.
| | - Pavol Farkaš
- Department of Glycobiotechnology, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia.
| | - Sandra Bieliková
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Alžbeta Čížová
- Department of Glycomaterials, Institute of Chemistry Slovak Academy of Sciences, Dúbravská Cesta 9, 84538, Bratislava, Slovakia
| | - Marzena Sujkowska-Rybkowska
- Department of Botany, Warsaw, Institute of Biology, University of Life Sciences, Nowoursynowska 159C Street, 02-787, Warsaw, Poland
| |
Collapse
|
7
|
Rawling M, Schiavone M, Mugnier A, Leclercq E, Merrifield D, Foey A, Apper E. Modulation of Zebrafish ( Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023; 11:2900. [PMID: 38138044 PMCID: PMC10745996 DOI: 10.3390/microorganisms11122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Marion Schiavone
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Amélie Mugnier
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Eric Leclercq
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Daniel Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Emmanuelle Apper
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| |
Collapse
|