1
|
Pereira-Fantini PM, Byars SG, Kamlin COF, Manley BJ, Davis PG, Tingay DG. Plasma Proteome Profiles Associated with Early Development of Lung Injury in Extremely Preterm Infants. Am J Respir Cell Mol Biol 2024; 71:677-687. [PMID: 39051934 DOI: 10.1165/rcmb.2024-0034oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
The biological mediators that initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. In this exploratory study, we used sequential window acquisition of all theoretical mass spectra mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Last, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes, including coagulation, complement activation, development, and extracellular matrix organization, in the first days of life in extremely preterm infants who later received diagnoses of BPD. In the BPD prediction analysis, 49 plasma proteins were identified; when each singularly was combined with birth characteristics the optimism-adjusted C index was 0.65-0.84, suggesting predictive potential for BPD outcomes. Taken together, the results of this study demonstrate that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers, when combined with three birth characteristics, have the potential to predict BPD development within the first 72 hours of life.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - C Omar F Kamlin
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Brett J Manley
- Victorian Infant Brain Studies Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Peter G Davis
- Neonatal Research Group and
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - David G Tingay
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| |
Collapse
|
2
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
3
|
Pei H, Qu J, Chen J, Zhao G, Lu Z. S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. J Inflamm Res 2024; 17:4483-4503. [PMID: 39006491 PMCID: PMC11246037 DOI: 10.2147/jir.s457340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Sepsis-induced cardiomyopathy (SICM) is a prevalent cardiac dysfunction caused by sepsis. Mitochondrial dysfunction is a crucial pathogenic factor associated with adverse cardiovascular adverse events; however, research on SICM remains insufficient. Methods To investigate the factors contributing to the pathological progression of SICM, we performed a comprehensive analysis of transcriptomic data from the GEO database using bioinformatics and machine learning techniques. CRISPR-Cas9 S100A9 knockout mice and primary cardiomyocytes were exposed to lipopolysaccharide to simulate SICM. Transcriptome analysis and mass spectrometry of primary cardiomyocytes were used to determine the potential pathogenic mechanisms of S100A9. The mitochondrial ultrastructure and mitochondrial membrane potential (MMP) were detected using transmission electron microscopy and flow cytometry, respectively. Pink1/Parkin and Drp1 proteins were detected using Western blotting to evaluate mitochondrial autophagy and division. The mtDNA and mRNA levels of mitochondrial transcription factors and synthases were evaluated using real-time polymerase chain reaction. Results Bioinformatics analysis identified 12 common differentially expressed genes, including SERPINA3N, LCN2, MS4A6D, LRG1, OSMR, SOCS3, FCGR2b, S100A9, S100A8, CASP4, ABCA8A, and NFKBIZ. Significant S100A9 upregulation was closely associated with myocardial injury exacerbation and cardiac function deterioration. GSEA revealed that myocardial contractile function, oxidative stress, and mitochondrial function were significantly affected by S100A9. Knocking out S100A9 alleviates the inflammatory response and mitochondrial dysfunction. The interaction of S100A9 with ATP5 enhanced mitochondrial division and autophagy, inhibited MMP and ATP synthesis, and induced oxidative stress, which are related to the Nlrp3-Nfkb-Caspase1 and Drp1-Pink1-Parkin signaling pathways. The expression of mitochondrial transcription factors (TFAM and TFBM) and ATP synthetases (ATP6 and ATP8, as well as COX1, COX2, and COX3) was further suppressed by S100A9 in SICM. Targeted S100A9 inhibition by paquinimod partially reversed myocardial mitochondrial dysfunction and oxidative stress. Conclusion The interaction of S100A9 with ATP5 exacerbates myocardial damage in sepsis by inducing mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jie Qu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Guangju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - ZhongQiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, People’s Republic of China
| |
Collapse
|
4
|
Kang ZY, Huang QY, Zhen NX, Xuan NX, Zhou QC, Zhao J, Cui W, Zhang ZC, Tian BP. Heterogeneity of immune cells and their communications unveiled by transcriptome profiling in acute inflammatory lung injury. Front Immunol 2024; 15:1382449. [PMID: 38745657 PMCID: PMC11092984 DOI: 10.3389/fimmu.2024.1382449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFβ signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.
Collapse
Affiliation(s)
- Zhi-ying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian-yu Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ning-xin Zhen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nan-xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi-chao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhao-cai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Li J, Wang Y, Zhao W, Yang T, Zhang Q, Yang H, Li X, Tong Z. Multi-omics analysis reveals overactive inflammation and dysregulated metabolism in severe community-acquired pneumonia patients. Respir Res 2024; 25:45. [PMID: 38243232 PMCID: PMC10797892 DOI: 10.1186/s12931-024-02669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Severe community-acquired pneumonia (S-CAP) is a public health threat, making it essential to identify novel biomarkers and investigate the underlying mechanisms of disease severity. METHODS Here, we profiled host responses to S-CAP through proteomics analysis of plasma samples from a cohort of S-CAP patients, non-severe (NS)-CAP patients, diseases controls (DCs), and healthy controls (HCs). Then, typical differentially expressed proteins were then validated by ELISA in an independent cohort. Metabolomics analysis was further performed on both the cohort 1 and cohort 2. Then, the proteomic and metabolomic signatures were compared between the adult and child cohorts to explore the characteristics of severe pneumonia patients. RESULTS There were clear differences between CAP patients and controls, as well as substantial differences between the S-CAP and NS-CAP. Pathway analysis of changes revealed excessive inflammation, suppressed immunity, and lipid metabolic disorders in S-CAP cases. Interestingly, comparing these signatures between the adult and child cohorts confirmed that overactive inflammation and dysregulated lipid metabolism were common features of S-CAP patients, independent of age. The change proportion of glycerophospholipids, glycerolipids, and sphingolipids were obviously different in the adult and child S-CAP cases. CONCLUSION The plasma multi-omics profiling revealed that excessive inflammation, suppressed humoral immunity, and disordered metabolism are involved in S-CAP pathogenesis.
Collapse
Affiliation(s)
- Jieqiong Li
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China.
| | - Yawen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Weichao Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, China
| | - Tingyu Yang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Qianyu Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Xuyan Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China.
| |
Collapse
|
6
|
Qiu Y, Feng X, Liu C, Shi Y, Xu L, You H, Wang L, Lv C, Wang F, Tan W. Proteomic profiling identifies SPP1 associated with rapidly progressive interstitial lung disease in anti-MDA5-positive dermatomyositis. Arthritis Res Ther 2024; 26:9. [PMID: 38167532 PMCID: PMC10759429 DOI: 10.1186/s13075-023-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Anti-melanoma differentiation-associated gene five antibody positive (MDA5+) dermatomyositis (DM) is significantly associated with rapidly progressive interstitial lung disease (RP-ILD). Early detection of RP-ILD remains a major challenge. This study aims to identify and validate prognostic factors for RP-ILD in MDA5+ DM patients. METHODS Plasma samples from 20 MDA5+ DM patients and 10 healthy controls (HC) were collected for proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The proteins of interest were validated in independent samples (20 HC, 20 MDA5+ DM with RP-ILD, and 20 non-RP-ILD patients) with enzyme-linked immunosorbent assay (ELISA). RESULTS A total of 413 differentially expressed proteins (DEPs) were detected between the MDA5+ DM patients and HC. When comparing DEPs between RP-ILD and non-RP-ILD patients, 79 proteins were changed in RP-ILD patients, implicating acute inflammatory response, coagulation, and complement cascades. Six candidate biomarkers were confirmed with ELISA. Secreted phosphoprotein 1 (SPP1), serum amyloid A1 (SAA1), and Kininogen 1 (KNG1) concentrations were significantly elevated in RP-ILD patients than those in non-RP-ILD patients and HC. In the different clinical subgroups, SPP1 was particularly elevated in the high-risk RP-ILD subgroup of MDA5+ DM. CONCLUSION This study provides novel insights into the pathogenesis of RP-ILD development in MDA5+ DM and suggests the plasma protein SPP1 could serve as a potential blood biomarker for RP-ILD early warning.
Collapse
Affiliation(s)
- Yulu Qiu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yumeng Shi
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Lingxiao Xu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hanxiao You
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Lei Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Chengyin Lv
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
7
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|