1
|
Ooko E, Ali NT, Efferth T. Identification of Cuproptosis-Associated Prognostic Gene Expression Signatures from 20 Tumor Types. BIOLOGY 2024; 13:793. [PMID: 39452102 PMCID: PMC11505359 DOI: 10.3390/biology13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
We investigated the mRNA expression of 124 cuproptosis-associated genes in 7489 biopsies from 20 different tumor types of The Cancer Genome Atlas (TCGA). The KM plotter algorithm has been used to calculate Kaplan-Meier statistics and false discovery rate (FDR) corrections. Interaction networks have been generated using Ingenuity Pathway Analysis (IPA). High mRNA expression of 63 out of 124 genes significantly correlated with shorter survival times of cancer patients across all 20 tumor types. IPA analyses revealed that their gene products were interconnected in canonical pathways (e.g., cancer, cell death, cell cycle, cell signaling). Four tumor entities showed a higher accumulation of genes than the other cancer types, i.e., renal clear cell carcinoma (n = 21), renal papillary carcinoma (n = 13), kidney hepatocellular carcinoma (n = 13), and lung adenocarcinoma (n = 9). These gene clusters may serve as prognostic signatures for patient survival. These signatures were also of prognostic value for tumors with high mutational rates and neoantigen loads. Cuproptosis is of prognostic significance for the survival of cancer patients. The identification of specific gene signatures deserves further exploration for their clinical utility in routine diagnostics.
Collapse
Affiliation(s)
- Ednah Ooko
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, Kakamega 190-50100, Kenya
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
2
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Jiaxuan Wu
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
- China-Canada Centre of Research for Digestive Diseases University of Ottawa Ottawa Ontario Canada
| | - Guang Ji
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Yanqi Dang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| |
Collapse
|
3
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Jawed R, Bhatti H. Cuproptosis in lung cancer: therapeutic options and prognostic models. Apoptosis 2024:10.1007/s10495-024-01978-x. [PMID: 38735011 DOI: 10.1007/s10495-024-01978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Lung cancer (LC) is a serious threat to mankind. The survival of LC patients is still poor despite the enormous efforts that have been made to develop novel treatments. A copper-dependent cell death termed cuproptosis is distinct from known programmed cell death (PCD). Cuproptosis is induced by the disruption of the binding of copper to lipoylated tricarboxylic acid (TCA) cycle proteins of mitochondrial respiratory chains. Potential approaches for treating LC are inducing cell cuproptosis and targeting cell copper death mechanisms. Thus, in this review, we summarize the systemic and cellular metabolic processes of copper. We highlight the possible therapeutic options of employing copper ionophores and chelators for inducing cuproptosis. Moreover, we summarize the prognostic models based on cuproptosis-related genes (CRGs) to identify promising biomarkers for tumor diagnosis and therapy. This review aims to provide a comprehensive summary of CRGs-based prognostic models and promising therapeutic options for cuproptosis induction in LC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Zhong L, Chang W, Luo B, Gao W, He H, Fang M, Li H, Wen Z, Chen Y. Development and validation of a disulfidptosis and disulfide metabolism-related risk index for predicting prognosis in lung adenocarcinoma. Cancer Cell Int 2024; 24:2. [PMID: 38167017 PMCID: PMC10763446 DOI: 10.1186/s12935-023-03204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Disulfidptosis is a recently proposed novel cell death mode in which cells with high SLC7A11 expression induce disulfide stress and cell death in response to glucose deficiency. The purpose of the research was to explore the function of disufidptosis and disulfide metabolism in the progression of lung adenocarcinoma (LUAD). METHODS The RNA-seq data from TCGA were divided into high/low expression group on the base of the median expression of SLC7A11, and the characteristic of differentially expressed disulfide metabolism-related genes. Least absolute shrinkage and selection operator (LASSO) algorithm was conducted the disulfidptosis and disulfide metabolism risk index. The tumor mutation burden (TMB), mechanism, pathways, tumor microenvironment (TME), and immunotherapy response were assessed between different risk groups. The role of TXNRD1 in LUAD was investigated by cytological experiments. RESULTS We established the risk index containing 5 genes. There are significant differences between different risk groups in terms of prognosis, TMB and tumor microenvironment. Additionally, the low-risk group demonstrated a higher rate of response immunotherapy in the prediction of immunotherapy response. Experimental validation suggested that the knockdown of TXNRD1 suppressed cell proliferation, migration, and invasion of LUAD. CONCLUSION Our research highlights the enormous potential of disulfidptosis and disulfide metabolism risk index in predicting the prognosis of LUAD. And TXNRD1 has great clinical translational ability.
Collapse
Affiliation(s)
- Leqi Zhong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wuguang Chang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Bin Luo
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wuyou Gao
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huanhuan He
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat sen University Cancer Center, Guangzhou, 510060, China
| | - Mouxiang Fang
- Institute of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongmu Li
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Zhesheng Wen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Youfang Chen
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Ma Z, Wang L, Huang X, Ji H, Wang H, Yang Y, Ma Y, Chen J. Construction of the metabolism-related models for predicting prognosis and infiltrating immune phenotype in lung squamous cell carcinoma. J Cancer 2023; 14:3539-3549. [PMID: 38021151 PMCID: PMC10647197 DOI: 10.7150/jca.86942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: Cancers often display disorder metabolism, which closely related to the poor outcome of patients. We aimed to establish prognostic models using metabolism-associated genes, and identify the key factor involved in metabolism in lung squamous cell carcinoma (LUSC). Materials and Methods: R package 'TCGA biolinks' was used to download the mRNA sequencing data of LUSC from TCGA. The clusterProfiler package was performed to analyze biological pathways. The online tool GEPIA2 and cox regression method were applied to identify the two gene lists associated with metabolism and prognosis of LUSC. The lasso modeling was conducted to establish prognostic models. The quantiseq method was used to identify the cellular abundance of expression matrix in TCGA-LUSC dataset. Immunohistochemistry and western blotting were done to evaluate the STXBP1 expression in LUSC samples. Lactate assay and ATP detection were performed to assess metabolic effect, and CCK8 assay was done to test cell proliferation in the LUSC cells with overexpression and suppression of STXBP1. Results: Two lists of survival-metabolism-associated genes (11 and 28 genes) were identified and applied in the prognostic model 1 and model 2 construction from TCGA-LUSC dataset. High-risk LUSC patients associated with poor survival in the training cohort and the test cohort of both model 1 and model 2. Higher ROC values for 10- year survival was shown in model 2 than in model 1. In addition, macrophage M1, macrophage M2, neutrophil, and T regulatory cell were enriched in the high-risk group of model 2. STXBP1 was the only optimized gene in both model 1 and model 2, and related to the poor outcome of LUSC patients. Furthermore, STXBP1 associated with infiltrating immune cells, and increased lactate, ATP levels, and cell proliferation. Conclusion: Our finding provides the metabolism-associated models to predict prognosis of LUSC patients. STXBP1, as the key optimized gene in the model, promotes metabolic progress to increase lactate and ATP levels in LUSC cells.
Collapse
Affiliation(s)
- Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Liang Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Xiaoyun Huang
- Department of Computational Oncology, Intelliphecy, Shenzhen, China; Center for Systems Biology, Intelliphecy, Shenzhen, China
| | - Hong Ji
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142, People's Republic of China
| | - Haoyang Wang
- Beijing International Bilingual Academy, People's Republic of China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| |
Collapse
|