1
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Tsuji G, Yumine A, Kawamura K, Takemura M, Kido-Nakahara M, Yamamura K, Nakahara T. Difamilast, a Topical Phosphodiesterase 4 Inhibitor, Produces Soluble ST2 via the AHR-NRF2 Axis in Human Keratinocytes. Int J Mol Sci 2024; 25:7910. [PMID: 39063153 PMCID: PMC11277015 DOI: 10.3390/ijms25147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.
Collapse
Affiliation(s)
- Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Ayako Yumine
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
| | - Koji Kawamura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Masaki Takemura
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Kazuhiko Yamamura
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| | - Takeshi Nakahara
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan; (A.Y.); (K.Y.); (T.N.)
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.K.); (M.T.); (M.K.-N.)
| |
Collapse
|
3
|
Céspedes N, Fellows AM, Donnelly EL, Kaylor HL, Coles TA, Wild R, Dobson M, Schauer J, Van de Water J, Luckhart S. Basophil-Derived IL-4 and IL-13 Protect Intestinal Barrier Integrity and Control Bacterial Translocation during Malaria. Immunohorizons 2024; 8:371-383. [PMID: 38780542 PMCID: PMC11150129 DOI: 10.4049/immunohorizons.2300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1β (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | | | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Taylor A. Coles
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Ryan Wild
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Megan Dobson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
4
|
Kotnik N, Langner A, Meyer NH, Pas HH, Gibbs BF, Meijer JM, Diercks GFH, Horváth B, Raap U. Infiltration analysis of eosinophils and basophils and co-expression of CD69, CD63, IL-31 and IgE in patients with bullous and non-bullous pemphigoid. J Eur Acad Dermatol Venereol 2024; 38:e278-e281. [PMID: 37907267 DOI: 10.1111/jdv.19593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Affiliation(s)
- N Kotnik
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A Langner
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - N H Meyer
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - H H Pas
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B F Gibbs
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - J M Meijer
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G F H Diercks
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B Horváth
- Department of Dermatology, Expertise Center for Blistering Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - U Raap
- Division of Experimental Allergy and Immunodermatology, University of Oldenburg, Oldenburg, Germany
- University Clinic of Dermatology and Allergy, Klinikum Oldenburg AöR, Medical University, Oldenburg, Germany
| |
Collapse
|
5
|
Gray N, Wiebe D, Weihrauch T, Raap U, Limberg MM. Density Gradient Centrifugation-Independent Purification of Human Basophils. Curr Protoc 2024; 4:e991. [PMID: 38358026 DOI: 10.1002/cpz1.991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Basophils represent the rarest type of granulocyte in human peripheral blood. Thus, researching basophils has historically been challenging and has often been reliant on enrichment protocols using density gradient centrifugation. This article describes a novel, fast, and cost-effective method to purify highly viable human basophils from peripheral blood through negative immunomagnetic selection, foregoing the density centrifugation step in the Basic Protocol. The technique is easy to use and consistently produces purities >96%. Furthermore, the Support Protocols describe procedures to determine basophil yield, purity, and viability, and how to investigate functional activity of the purified basophils through flow cytometry and visualize the basophils through microscopy. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Gradient centrifugation-independent basophil isolation Support Protocol 1: Flow cytometry staining to assess basophil yield, purity, and viability Support Protocol 2: Giemsa staining Support Protocol 3: Calcium flux analysis Support Protocol 4: Basophil activation test.
Collapse
Affiliation(s)
- Natalie Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Daniela Wiebe
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|