1
|
Baune BT, Tremblay EM, Bechter K, Tian L. Editorial: The roles of peripheral immune cells and their circulatory effector molecules in neuropsychiatric disorders. Front Cell Neurosci 2024; 18:1471683. [PMID: 39285938 PMCID: PMC11402707 DOI: 10.3389/fncel.2024.1471683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eve-Marie Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Karl Bechter
- Department of Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, University of Ulm, Ulm, Germany
| | - Li Tian
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Bazzano MV, Köninger A, Solano ME. Beyond defence: Immune architects of ovarian health and disease. Semin Immunopathol 2024; 46:11. [PMID: 39134914 PMCID: PMC11319434 DOI: 10.1007/s00281-024-01021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.
Collapse
Affiliation(s)
- Maria Victoria Bazzano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany
| | - Angela Köninger
- University Department of Obstetrics and Gynecology, Clinic St. Hedwig of The Order of St. John, University of Regensburg, Steinmetzstr. 1-3, D-93049, Regensburg, Germany
| | - Maria Emilia Solano
- Laboratory of Translational Perinatology, University of Regensburg, Biopark 1-3, D-93053, Regensburg, Germany.
| |
Collapse
|
4
|
Sinha S, Vasudeva P. Can apparently transient life events trigger long-term lower urinary tract symptoms? Neurourol Urodyn 2024; 43:1104-1108. [PMID: 38289333 DOI: 10.1002/nau.25303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 02/01/2024]
Abstract
INTRODUCTION One-time life events such as neurological injury can result in lifelong lower urinary tract symptoms (LUTS). However, it is unclear whether an apparently transient life event can also trigger long-term LUTS. This review examines the possibility of an association and hypothesizes the pathogenesis. METHODS A pubmed search was conducted using the MeSH words "life change events," "child abuse," or "stress disorders, Posttraumatic", and LUTS. Additional manuscripts were identified by a hand and citation search. RESULTS Long-term LUTS was noted following temporally remote childhood sexual abuse, adverse childhood experiences, and stressful experiences in adults. There was evidence for an association of childhood sexual abuse and adverse childhood events with both storage as well as voiding LUTS. There was limited evidence that the number of adverse childhood events might increase the risk and severity of LUTS. There was evidence of an association between post-traumatic stress disorder in adults and LUTS. The finding of mental health disorders in such patients could explain some but not all of the observed association suggesting that other factors might also be important. CONCLUSIONS There is an association noted between apparently transient lifetime events and the subsequent reporting of LUTS. The timing of these adverse experiences might be important in determining the propensity for clinical manifestation. There is a need to explore this association, establish causality, and determine the underlying etiopathogenesis.
Collapse
Affiliation(s)
- Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, India
| | - Pawan Vasudeva
- Department of Urology and Renal Transplant, Vardhaman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
5
|
Walker CG, Thayer ZM, Marks EJ, Ly KN, Pillai A, Waldie K, Underwood L, Snell RG, Knowles SD, Cha JE, Morton SMB. Association between maternal depression symptoms and child telomere length. J Psychiatr Res 2024; 174:319-325. [PMID: 38685189 DOI: 10.1016/j.jpsychires.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The biological mechanisms that explain how adverse early life events influence adult disease risk are poorly understood. One proposed mechanism is via the induction of accelerated biological aging, for which telomere length is considered a biomarker. We aimed to determine if maternal depression pre- and post-partum was associated with telomere length in children at 4 years of age (n = 4299). Mothers completed structured questionnaires assessing depression during pregnancy (Edinburgh Depression Scale), at 9 months (Edinburgh Depression Scale), and at 54 months postpartum (Patient Health Questionnaire 9). Regression methods were used to investigate the relationship between telomere length (DNA from saliva) and maternal depression score recorded at each stage. Significant covariates included in the final model were: maternal age at pregnancy; child sex; child ethnicity; gestational age group, and rurality group. Child telomere length was found to be longer if their mother had a higher depression score at both postpartum time points tested (9 months of age; coefficient 0.003, SE = 0.001, P = 0.01, 54 months of age; coefficient 0.003, SE = 0.002, P = 0.02). Although these findings seem paradoxical, increased telomere length may be an adaptive response to early life stressors. We propose several testable hypotheses for these results and to determine if the positive association between depression and telomere length is a developmental adaptation or an indirect consequence of environmental factors.
Collapse
Affiliation(s)
- Caroline G Walker
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand.
| | - Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Emma J Marks
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Kien N Ly
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Avinesh Pillai
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Karen Waldie
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; School of Psychology, University of Auckland, Auckland, New Zealand
| | - Lisa Underwood
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Sarah D Knowles
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand; Auckland Museum, Auckland, New Zealand
| | - Jane E Cha
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| | - Susan M B Morton
- Centre for Longitudinal Research - He Ara ki Mua and Growing Up in New Zealand, University of Auckland, New Zealand
| |
Collapse
|
6
|
Holuka C, Menta G, Caro JC, Vögele C, D'Ambrosio C, Turner JD. Developmental epigenomic effects of maternal financial problems. Dev Psychopathol 2024:1-14. [PMID: 38654405 DOI: 10.1017/s095457942400083x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Early-life adversity as neglect or low socioeconomic status is associated with negative physical/mental health outcomes and plays an important role in health trajectories through life. The early-life environment has been shown to be encoded as changes in epigenetic markers that are retained for many years.We investigated the effect of maternal major financial problems (MFP) and material deprivation (MD) on their children's epigenome in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Epigenetic aging, measured with epigenetic clocks, was weakly accelerated with increased MFP. In subsequent EWAS, MFP, and MD showed strong, independent programing effects on children's genomes. MFP in the period from birth to age seven was associated with genome-wide epigenetic modifications on children's genome visible at age 7 and partially remaining at age 15.These results support the hypothesis that physiological processes at least partially explain associations between early-life adversity and health problems later in life. Both maternal stressors (MFP/MD) had similar effects on biological pathways, providing preliminary evidence for the mechanisms underlying the effects of low socioeconomic status in early life and disease outcomes later in life. Understanding these associations is essential to explain disease susceptibility, overall life trajectories and the transition from health to disease.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, Belval, Luxembourg
| | - Giorgia Menta
- Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg
| | - Juan Carlos Caro
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Industrial Engineering, Universidad de Concepcion, Talcahuano, Chile
| | - Claus Vögele
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Conchita D'Ambrosio
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Merz MP, Seal SV, Grova N, Mériaux S, Guebels P, Kanli G, Mommaerts E, Nicot N, Kaoma T, Keunen O, Nazarov PV, Turner JD. Early-life influenza A (H1N1) infection independently programs brain connectivity, HPA AXIS and tissue-specific gene expression profiles. Sci Rep 2024; 14:5898. [PMID: 38467724 PMCID: PMC10928197 DOI: 10.1038/s41598-024-56601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
- Central Biobank Charité, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Snehaa V Seal
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Inserm U1256, NGERE, Nutrition-Génétique Et Exposition Aux Risques Environnementaux, Université de Lorraine, 54000, Nancy, France
| | - Sophie Mériaux
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Georgia Kanli
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Elise Mommaerts
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Olivier Keunen
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg.
| |
Collapse
|
8
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
9
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|