1
|
Mora VP, Quero FB, Troncoso-Bravo T, Orellana C, Pereira P, Mackern-Oberti JP, Funes SC, Soto JA, Bohmwald K, Bueno SM, Kalergis AM. Partial long-term clinical improvement after a BCG challenge in systemic lupus erythematosus-prone mice. Autoimmunity 2024; 57:2380465. [PMID: 39034498 DOI: 10.1080/08916934.2024.2380465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.
Collapse
Affiliation(s)
- Valentina P Mora
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisco B Quero
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Orellana
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Samanta C Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy. Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ramírez MA, Loaiza RA, Martínez-Balboa Y, Bruneau N, Ramírez E, González PA, Bueno SM, Kalergis AM. Co-administration of recombinant BCG and SARS-CoV-2 proteins leads to robust antiviral immunity. Vaccine 2024; 42:126203. [PMID: 39178767 DOI: 10.1016/j.vaccine.2024.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
SARS-CoV-2 is the causative virus of COVID-19, which has been responsible for millions of deaths worldwide since its discovery. After its emergence, several variants have been identified that challenge the efficacy of the available vaccines. Previously, we generated and evaluated a vaccine based on a recombinant Bacillus Calmette-Guérin (rBCG) expressing the nucleoprotein (N) of SARS-CoV-2 (rBCG-N-SARS-CoV-2). This protein is a highly immunogenic antigen and well conserved among variants. Here, we tested the administration of this vaccine with recombinant N and viral Spike proteins (S), or Receptor Binding Domain (RBD-Omicron variant), plus a booster with the recombinant proteins only, as a novel and effective strategy to protect against SARS-CoV-2 variants. METHODS BALB/c mice were immunized with rBCG-N-SARS-CoV-2 and recombinant SARS-CoV-2 proteins in Alum adjuvant, followed by a booster with recombinant proteins to assess the safety and virus-specific cellular and humoral immune responses against SARS-CoV-2 antigens. RESULTS Immunization with rBCG-N-SARS-CoV-2 + recombinant proteins as a vaccine was safe and promoted the activation of CD4+ and CD8+ T cells that recognize SARS-CoV-2 N, S, and RBD antigens. These cells were able to secrete cytokines with an antiviral profile. This immunization strategy also induced robust titers of specific antibodies against N, S, and RBD and neutralizing antibodies of SARS-CoV-2. CONCLUSIONS Co-administration of the rBCG-N-SARS-CoV-2 vaccine with recombinant SARS-CoV-2 proteins could be an effective alternative to control particular SARS-CoV-2 variants. Due to its safety and capacity to induce virus-specific immune responses, we believe the rBCG-N-SARS-CoV-2 + Proteins vaccine could be an attractive candidate to protect against this virus, especially in newborns.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- BCG Vaccine/immunology
- BCG Vaccine/administration & dosage
- BCG Vaccine/genetics
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunization, Secondary
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Immunity, Humoral
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/genetics
- CD8-Positive T-Lymphocytes/immunology
- Phosphoproteins/immunology
- Phosphoproteins/genetics
- Adjuvants, Immunologic/administration & dosage
- Immunity, Cellular
Collapse
Affiliation(s)
- Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Yohana Martínez-Balboa
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Nicole Bruneau
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Eugenio Ramírez
- Sección Virus Oncogénicos y Sub-Departamento Enfermedades Virales, Instituto de Salud Pública de Chile, Ñuñoa, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Papazisis G, Topalidou X. Maternal Vaccination for the Prevention of Infantile RSV Disease: An Overview of the Authorized, In-Progress, and Rejected Vaccine Candidates. Vaccines (Basel) 2024; 12:980. [PMID: 39340012 PMCID: PMC11435746 DOI: 10.3390/vaccines12090980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) continues to pose a significant challenge, contributing to elevated hospitalization rates among children up to 5 years old, with a disproportionate burden on newborns and infants under 6 months old. The unique characteristics of the young immune system make it prone to altered responses to infections and vaccinations, requiring a tailored approach to disease prevention. The recent approval of the maternal RSV vaccine (brand name ABRYSVO) represents a pivotal advancement in preventive strategies among newborns and infants, marking a milestone in RSV research as the first market-approved maternal vaccine. The present review examines clinical trial data on both recent and previous vaccine candidates, as well as the licensed vaccine, focusing on the prevention of RSV disease in newborns and young infants through the passive acquisition of antibodies following maternal immunization. Additionally, it evaluates the safety profile of these vaccines.
Collapse
Affiliation(s)
- Georgios Papazisis
- Clinical Research Unit, Special Unit for Biomedical Research and Education & Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
4
|
Loaiza RA, Farías MA, Andrade CA, Ramírez MA, Rodriguez-Guilarte L, Muñóz JT, González PA, Bueno SM, Kalergis AM. Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2024; 22:631-645. [PMID: 39269198 DOI: 10.1080/14787210.2024.2403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION The human respiratory syncytial virus (hRSV) is one of childhood diseases' most common respiratory pathogens and is associated with lower respiratory tract infections. The peak in disease that this virus can elicit during outbreaks is often a significant burden for healthcare systems worldwide. Despite theapproval of treatments against hRSV, this pathogen remains one the most common causative agent of infant mortality around the world. AREAS COVERED This review focuses on the key prognostic and immunomodulatory biomarkers associated with hRSV infection, as well as prophylactic monoclonal antibodies and vaccines. The goal is to catalyze a paradigm shift within the scientific community toward the discovery of novel targets to predict the clinical outcome of infected patients, as well as the development of novel antiviral agents targeting hRSV. The most pertinent research on this topic was systematically searched and analyzed using PubMed ISI Thomson Scientific databases. EXPERT OPINION Despite advances in approved therapies against hRSV, it is crucial to continue researching to develop new therapies and to find specific biomarkers to predict the severity of infection. Along these lines, the use of multi-omics data, artificial intelligence and natural-derived compounds with antiviral activity could be evaluated to fight hRSV and develop methods for rapid diagnosis of severity.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñóz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Papazisis G, Topalidou X, Gioula G, González PA, Bueno SM, Kalergis AM. Respiratory Syncytial Virus Vaccines: Analysis of Pre-Marketing Clinical Trials for Immunogenicity in the Population over 50 Years of Age. Vaccines (Basel) 2024; 12:353. [PMID: 38675736 PMCID: PMC11054105 DOI: 10.3390/vaccines12040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Immunosenescence refers to age-related alterations in immune system function affecting both the humoral and cellular arm of immunity. Understanding immunosenescence and its impact on the vaccination of older adults is essential since primary vaccine responses in older individuals can fail to generate complete protection, especially vaccines targeting infections with increased incidence among the elderly, such as the respiratory syncytial virus. Here, we review clinical trials of both candidate and approved vaccines against respiratory syncytial virus (RSV) that include adults aged ≥50 years, with an emphasis on the evaluation of immunogenicity parameters. Currently, there are 10 vaccine candidates and 2 vaccines approved for the prevention of RSV in the older adult population. The number of registered clinical trials for this age group amounts to 42. Our preliminary evaluation of published results and interim analyses of RSV vaccine clinical trials indicates efficacy in older adult participants, demonstrating immunity levels that closely resemble those of younger adult participants.
Collapse
Affiliation(s)
- Georgios Papazisis
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Xanthippi Topalidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgia Gioula
- Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile (A.M.K.)
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile (A.M.K.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile (A.M.K.)
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
6
|
Loaiza RA, Ramírez RA, Sepúlveda-Alfaro J, Ramírez MA, Andrade CA, Soto JA, González PA, Bueno SM, Kalergis AM. A molecular perspective for the development of antibodies against the human respiratory syncytial virus. Antiviral Res 2024; 222:105783. [PMID: 38145755 DOI: 10.1016/j.antiviral.2023.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
The human respiratory syncytial virus (hRSV) is the leading etiologic agent causing respiratory infections in infants, children, older adults, and patients with comorbidities. Sixty-seven years have passed since the discovery of hRSV, and only a few successful mitigation or treatment tools have been developed against this virus. One of these is immunotherapy with monoclonal antibodies against structural proteins of the virus, such as Palivizumab, the first prophylactic approach approved by the Food and Drug Administration (FDA) of the USA. In this article, we discuss different strategies for the prevention and treatment of hRSV infection, focusing on the molecular mechanisms against each target that underly the rational design of antibodies against hRSV. At the same time, we describe the latest results regarding currently approved therapies against hRSV and the challenges associated with developing new candidates.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Robinson A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|