1
|
Lemke S, Dubbelaar ML, Zimmermann P, Bauer J, Nelde A, Hoenisch Gravel N, Scheid J, Wacker M, Jung S, Dengler A, Maringer Y, Rammensee HG, Gouttefangeas C, Fillinger S, Bilich T, Heitmann JS, Nahnsen S, Walz JS. PCI-DB: a novel primary tissue immunopeptidome database to guide next-generation peptide-based immunotherapy development. J Immunother Cancer 2025; 13:e011366. [PMID: 40234091 PMCID: PMC12001369 DOI: 10.1136/jitc-2024-011366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Various cancer immunotherapies rely on the T cell-mediated recognition of peptide antigens presented on human leukocyte antigens (HLA). However, the identification and selection of naturally presented peptide targets for the development of personalized as well as off-the-shelf immunotherapy approaches remain challenging. METHODS Over 10,000 raw mass spectrometry (MS) files from over 3,000 tissue samples were analyzed, summing to approximately seven terabytes of data. The raw MS data were processed using the standardized and open-source nf-core pipelines MHCquant2 and epitopeprediction, providing a uniform procedure for data handling. A global false discovery rate was applied to minimize false-positive identifications. RESULTS Here, we introduce the open-access Peptides for Cancer Immunotherapy Database (PCI-DB, https://pci-db.org/), a comprehensive resource of immunopeptidome data originating from various malignant and benign primary tissues that provides the research community with a convenient tool to facilitate the identification of peptide targets for immunotherapy development. The PCI-DB includes >6.6 million HLA class I and >3.4 million HLA class II peptides from over 40 tissue types and cancer entities. First application of the database provided insights into the representation of cancer-testis antigens across malignant and benign tissues, enabling the identification and characterization of cross-tumor entity and entity-specific tumor-associated antigens (TAAs) as well as naturally presented neoepitopes from frequent cancer mutations. Further, we used the PCI-DB to design personalized peptide vaccines for two patients suffering from metastatic cancer. In a retrospective analysis, PCI-DB enabled the composition of both a multi-peptide vaccine comprising non-mutated, highly frequent TAAs matching the immunopeptidome of the individual patient's tumor and a neoepitope-based vaccine matching the mutational profile of a patient with cancer. Both vaccine approaches induced potent and long-lasting T-cell responses, accompanied by long-term survival of these patients with advanced cancer. CONCLUSION The PCI-DB provides a highly versatile tool to broaden the understanding of cancer-related antigen presentation and, ultimately, supports the development of novel immunotherapies.
Collapse
Affiliation(s)
- Steffen Lemke
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marissa L Dubbelaar
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Patrick Zimmermann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Naomi Hoenisch Gravel
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Susanne Jung
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Anna Dengler
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Cecile Gouttefangeas
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Institute of Immunology, University of Tübingen, Tübingen, BW, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
| | - Tatjana Bilich
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
| | - Jonas S Heitmann
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| | - Sven Nahnsen
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, BW, Germany
- Department of Computer Science, University of Tübingen, Tübingen, BW, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, BW, Germany
- M3 Research Center, University Hospital of Tübingen, Tübingen, BW, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, BW, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, BW, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, BW, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, BW, Germany
| |
Collapse
|
2
|
Xia M, Ling C, Ye H, Liang S, Cao Q, Wang W, Zhang C, Dong Z, Tian M, Zuo J, Zhu Y. Preparation and characterization of immunopeptides isolated from pig spleen and evaluation of their immunomodulatory properties in vitro and in vivo. Front Immunol 2025; 16:1544299. [PMID: 40170860 PMCID: PMC11959066 DOI: 10.3389/fimmu.2025.1544299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The importance of small bioactive peptides derived from pig spleen have been used to enhance immune responses and support intestinal health. However, there is a lack of information regarding the conformational relationship and their effects on immune function of pig spleen proteins (PSPs). The objective of this study was to prepare and assess the immunomodulatory characteristics of immunopeptides from PSP. Firstly, enzymatic hydrolysates from PSP were prepared using alkaline protease and aminopeptidase, and small hydrolysate fractions with a <3 kDa were separated by SDS-PAGE and GPC. The bioactive peptides were then identified at peaks 5 to 7 (PSP-5, 6 and 7) by HPLC and TOF-MS, which were mainly composed of Pro-Glu-Leu by LC-MS. The PSP-5 and PSP-6 pronounced greater beneficial effects on cell viability and nitric oxide (NO) production than PSP-7 in macrophage, and PSP-5 exhibited a higher immunomodulatory ability than PSP-6. In vivo, the oral administration of 25-50 mg PSP-5/kg body weight (BW) protected against cyclophosphamide (CTX)-induced immunosuppression in spleen and intestine of mouse, as evidenced by increased cytokine and sIgA productions. In conclusion, a novel set of bioactive immunopeptides derived from PSP through enzymatic hydrolysis could enhance immunomodulatory properties.
Collapse
Affiliation(s)
- Minhao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Ling
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Ye
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shujie Liang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyun Cao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weiwei Wang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Changming Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zemin Dong
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Min Tian
- Modern Agricultural College, Xiangxi National Vocational and Technical College, Jishou, China
| | - Jianjun Zuo
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongwen Zhu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|