1
|
Hodges A, Dubuque R, Chen SH, Pan PY. The LILRB family in hematologic malignancies: prognostic associations, mechanistic considerations, and therapeutic implications. Biomark Res 2024; 12:159. [PMID: 39696628 DOI: 10.1186/s40364-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The leukocyte immunoglobulin-like receptor B (LILRB) proteins, characterized by their transmembrane nature and canonical immunoreceptor tyrosine-based inhibitory motifs (ITIM) signaling, play a pivotal role in maintaining immune homeostasis and are implicated in the pathogenesis of various disease states. This comprehensive review will focus on the intricate involvement of the LILRB family in hematologic malignancies. These receptors have emerged as valuable diagnostic and prognostic biomarkers in leukemia, lymphoma, and myeloma. Beyond their prognostic implications, LILRBs actively shape the immune microenvironment and directly influence the disease pathogenesis of hematologic malignancies. Furthermore, their identification as potential therapeutic targets offer a promising avenue for precision medicine strategies in the treatment of these disorders. Currently, multiple LILRB directed therapies are in the preclinical and clinical trial pipelines. This review underscores the multifaceted role of the LILRB family in hematologic malignancies, highlighting their significance from diagnostic and prognostic perspectives to their broader impact on disease pathophysiology and as valuable therapeutic targets.
Collapse
Affiliation(s)
- Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA
| | - Rachel Dubuque
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York City, NY, 10065, USA.
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Texas A&M University College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
2
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
3
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
4
|
Rafiei A, Gualandi M, Yang CL, Woods R, Kumar A, Brunner K, Sigrist J, Ebersbach H, Coats S, Renner C, Marroquin Belaunzaran O. IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity. Cancers (Basel) 2024; 16:2902. [PMID: 39199672 PMCID: PMC11352577 DOI: 10.3390/cancers16162902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - Richard Woods
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | | | - John Sigrist
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | | | - Steve Coats
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
| | - Christoph Renner
- ImmunOs Therapeutics AG, 8952 Schlieren, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | | |
Collapse
|
5
|
Hu Z, Zhang Q, He Z, Jia X, Zhang W, Cao X. MHC1/LILRB1 axis as an innate immune checkpoint for cancer therapy. Front Immunol 2024; 15:1421092. [PMID: 38911856 PMCID: PMC11190085 DOI: 10.3389/fimmu.2024.1421092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy through unleashing anti-tumor adaptive immunity. Despite that, they are usually effective only in a small subset of patients and relapse can occur in patients who initially respond to the treatment. Recent breakthroughs in this field have identified innate immune checkpoints harnessed by cancer cells to escape immunosurveillance from innate immunity. MHC1 appears to be such a molecule expressed on cancer cells which can transmit a negative signal to innate immune cells through interaction with leukocyte immunoglobulin like receptor B1 (LILRB1). The review aims to summarize the current understanding of MHC1/LILRB1 axis on mediating cancer immune evasion with an emphasis on the therapeutic potential to block this axis for cancer therapy. Nevertheless, one should note that this field is still in its infancy and more studies are warranted to further verify the effectiveness and safety in clinical as well as the potential to combine with existing immune checkpoints.
Collapse
Affiliation(s)
- Ziyi Hu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaodong Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, China
| | - Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
7
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Kaminska P, Ovesen PL, Jakiel M, Obrebski T, Schmidt V, Draminski M, Bilska AG, Bieniek M, Anink J, Paterczyk B, Jensen AMG, Piatek S, Andersen OM, Aronica E, Willnow TE, Kaminska B, Dabrowski MJ, Malik AR. SorLA restricts TNFα release from microglia to shape a glioma-supportive brain microenvironment. EMBO Rep 2024; 25:2278-2305. [PMID: 38499808 PMCID: PMC11094098 DOI: 10.1038/s44319-024-00117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
SorLA, encoded by the gene SORL1, is an intracellular sorting receptor of the VPS10P domain receptor gene family. Although SorLA is best recognized for its ability to shuttle target proteins between intracellular compartments in neurons, recent data suggest that also its microglial expression can be of high relevance for the pathogenesis of brain diseases, including glioblastoma (GBM). Here, we interrogated the impact of SorLA on the functional properties of glioma-associated microglia and macrophages (GAMs). In the GBM microenvironment, GAMs are re-programmed and lose the ability to elicit anti-tumor responses. Instead, they acquire a glioma-supporting phenotype, which is a key mechanism promoting glioma progression. Our re-analysis of published scRNA-seq data from GBM patients revealed that functional phenotypes of GAMs are linked to the level of SORL1 expression, which was further confirmed using in vitro models. Moreover, we demonstrate that SorLA restrains secretion of TNFα from microglia to restrict the inflammatory potential of these cells. Finally, we show that loss of SorLA exacerbates the pro-inflammatory response of microglia in the murine model of glioma and suppresses tumor growth.
Collapse
Affiliation(s)
- Paulina Kaminska
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Peter L Ovesen
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Mateusz Jakiel
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Institute of Computer Science, 01-248, Warsaw, Poland
| | - Tomasz Obrebski
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Vanessa Schmidt
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | | | - Aleksandra G Bilska
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679, Warsaw, Poland
| | | | - Jasper Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Bohdan Paterczyk
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | | | - Sylwia Piatek
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland, 2103 SW, Heemstede, The Netherlands
| | - Thomas E Willnow
- Max-Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | | | - Anna R Malik
- Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland.
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
9
|
Xie W, Chen S, Luo H, Kong C, Wang D. Critical gene signature and immunological characterization in peripheral vascular atherosclerosis: novel insights from mendelian randomization and transcriptomics. Front Genet 2024; 15:1361445. [PMID: 38660678 PMCID: PMC11039871 DOI: 10.3389/fgene.2024.1361445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Peripheral vascular atherosclerosis (PVA) is a chronic inflammatory disease characterized by lipid accumulation in blood vessel walls, leading to vessel narrowing and inadequate blood supply. However, the molecular mechanisms underlying PVA remain poorly understood. In this study, we employed a combination of Mendelian randomization (MR) analysis and integrated transcriptomics to identify the critical gene signature associated with PVA. Methods This study utilized three public datasets (GSE43292, GSE100927 and GSE28829) related to peripheral vascular atherosclerosis obtained from the Gene Expression Omnibus database. Instrumental variables (IVs) were identified through expression quantitative trait loci (eQTL) analysis, and two-sample MR analysis was performed using publicly available summary statistics. Disease critical genes were identified based on odds ratios and intersected with differentially expressed genes in the disease dataset. GSE28829 dataset was used to validate the screened disease critical genes. Functional enrichment analysis, GSEA analysis, and immune cell infiltration analysis were performed to further characterize the role of these genes in peripheral vascular atherosclerosis. Results A total of 26,152 gene-related SNPs were identified as IVs, and 242 disease-associated genes were identified through MR analysis. Ten disease critical genes (ARHGAP25, HCLS1, HVCN1, RBM47, LILRB1, PLAU, IFI44L, IL1B, IFI6, and CFL2) were significantly associated with peripheral vascular atherosclerosis. Functional enrichment analysis using KEGG pathways revealed enrichment in the NF-kappa B signaling pathway and osteoclast differentiation. Gene set enrichment analysis further demonstrated functional enrichment of these genes in processes related to vascular functions and immune system activation. Additionally, immune cell infiltration analysis showed differential ratios of B cells and mast cells between the disease and control groups. The correlations analysis highlights the intricate interplay between disease critical genes and immune cells associated with PVA. Conclusion In conclusion, this study provides new insights into the molecular mechanisms underlying PVA by identifying ten disease critical genes associated with the disease. These findings, supported by differential expression, functional enrichment, and immune system involvement, emphasize the role of these genes in vascular function and immune cell interactions in the context of PVA. These findings contribute to a better understanding of PVA pathogenesis and offer potential targets for further mechanistic exploration and therapeutic interventions.
Collapse
Affiliation(s)
- Wei Xie
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Shumin Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hanqing Luo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Chuiyu Kong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|