1
|
Chunda VC, Fombad FF, Kien CA, Ebai R, Esofi F, Ntuh AN, Ouam E, Gandjui NVT, Ekanya R, Nietcho F, Nchang LC, Magha C, Njouendou AJ, Enyong P, Hoerauf A, Wanji S, Ritter M. Comparative development of human filariae Loa loa, Onchocerca volvulus and Mansonella perstans in immunocompromised mouse strains. FRONTIERS IN TROPICAL DISEASES 2024; 5:1293632. [PMID: 38655273 PMCID: PMC7615855 DOI: 10.3389/fitd.2024.1293632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction Mouse models of human filarial infections are not only urgently needed to investigate the biology of the nematodes and their modulation of the host's immunity, but will also provide a platform to screen and test novel anti-filarial drugs. Recently, murine Loa loa infection models have been stablished using immunocompromised mouse strains, whereas murine Mansonella perstans infections have not been implemented until now. Methods Therefore, we aim to establish experimental M. perstans infections using the immunocompromised mouse strains RAG2IL-2Rγ-/- (lack B, T and natural killer cells), IL-4Rα/IL-5-/- (impaired IL-4/5 signalling and eosinophil activation) and NOD.Cg-PrkdcscidIl2rgtm1Wj l/SzJ (NOD scid gamma, NSG) BALB/c mice (lack mature lymphocytes) through subcutaneous (s.c.) or intraperitoneal (i.p.) inoculation of infective stage 3 larvae (L3) isolated from engorged vectors. Results In total, 145 immunocompromised mice have been inoculated with 3,250 M. perstans, 3,337 O. volvulus, and 2,720 Loa loa L3 to comparatively analyse which immunocompromised mouse strain is susceptible to human filarial infections. Whereas, no M. perstans and O. volvulus L3 could be recovered upon 2-63 days post-inoculation, a 62-66% Loa loa L3 recovery rate could be achieved in the different mouse strains. Gender of mice, type of inoculation (s.c. or i.p.) or time point of analysis (2-63 days post inoculation) did not interfere with the success of L3 recovery. In addition, administration of the immune suppressants hydrocortisone, prednisolone and cyclophosphamide did not restore M. perstans L3 recovery rates. Discussion These findings show that RAG2IL-2Rg-/-BALB/c and C57BL/6, IL-4Rα/IL-5-/- BALB/c and NSG mice were not susceptible to M. perstans and O. volvulus L3 inoculation using the applied methods, whereas Loa loa infection could be maintained. Further studies should investigate if humanized immunocompromised mice might be susceptible to M. perstans. and O. volvulus.
Collapse
Affiliation(s)
- Valerine C. Chunda
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Frederick Esofi
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Anna Ning Ntuh
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Emmanuel Ouam
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Narcisse Victor Tchamatchoua Gandjui
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Relindis Ekanya
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Franck Nietcho
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Lucy Cho Nchang
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chefor Magha
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Peter Enyong
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
2
|
Gunderson EL, Bryant C, Bulman CA, Fischer C, Luo M, Vogel I, Lim KC, Jawahar S, Tricoche N, Voronin D, Corbo C, Ayiseh RB, Manfo FPT, Mbah GE, Cho-Ngwa F, Beerntsen B, Renslo AR, Lustigman S, Sakanari JA. Pyrvinium Pamoate and Structural Analogs Are Early Macrofilaricide Leads. Pharmaceuticals (Basel) 2022; 15:189. [PMID: 35215301 PMCID: PMC8880385 DOI: 10.3390/ph15020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/05/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are neglected tropical diseases caused by infection with filarial worms. Annual or biannual mass drug administration with microfilaricidal drugs that kill the microfilarial stages of the parasites has helped reduce infection rates and thus prevent transmission of both infections. However, success depends on high population coverage that is maintained for the duration of the adult worm's lifespan. Given that these filarial worms can live up to 14 years in their human hosts, a macrofilaricidal drug would vastly accelerate elimination efforts. Here, we have evaluated the repurposed drug pyrvinium pamoate as well as newly synthesized analogs of pyrvinium for their efficacy against filarial worms in vitro and in vivo. We found that pyrvinium pamoate, tetrahydropyrvinium and one of the analogs were highly potent in inhibiting worms in in vitro whole-worm screening assays, and that all three compounds reduced female worm fecundity and inhibited embryogenesis in the Brugia pahangi-gerbil in vivo model of infection.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Mona Luo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Kee-Chong Lim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Shabnam Jawahar
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Denis Voronin
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Christopher Corbo
- Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA;
| | - Rene B. Ayiseh
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Faustin P. T. Manfo
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Glory E. Mbah
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
- Higher Teacher Training College (HTTC), The University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (R.B.A.); (F.P.T.M.); (G.E.M.); (F.C.-N.)
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA; (S.J.); (N.T.); (D.V.)
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (E.L.G.); (C.B.); (C.A.B.); (C.F.); (M.L.); (I.V.); (K.-C.L.); (A.R.R.)
| |
Collapse
|