1
|
Goodwin AJ, Eytan D, Dixon W, Goodfellow SD, Doherty Z, Greer RW, McEwan A, Tracy M, Laussen PC, Assadi A, Mazwi M. Timing errors and temporal uncertainty in clinical databases-A narrative review. Front Digit Health 2022; 4:932599. [PMID: 36060541 PMCID: PMC9433547 DOI: 10.3389/fdgth.2022.932599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
A firm concept of time is essential for establishing causality in a clinical setting. Review of critical incidents and generation of study hypotheses require a robust understanding of the sequence of events but conducting such work can be problematic when timestamps are recorded by independent and unsynchronized clocks. Most clinical models implicitly assume that timestamps have been measured accurately and precisely, but this custom will need to be re-evaluated if our algorithms and models are to make meaningful use of higher frequency physiological data sources. In this narrative review we explore factors that can result in timestamps being erroneously recorded in a clinical setting, with particular focus on systems that may be present in a critical care unit. We discuss how clocks, medical devices, data storage systems, algorithmic effects, human factors, and other external systems may affect the accuracy and precision of recorded timestamps. The concept of temporal uncertainty is introduced, and a holistic approach to timing accuracy, precision, and uncertainty is proposed. This quantitative approach to modeling temporal uncertainty provides a basis to achieve enhanced model generalizability and improved analytical outcomes.
Collapse
Affiliation(s)
- Andrew J. Goodwin
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, Australia
| | - Danny Eytan
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - William Dixon
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sebastian D. Goodfellow
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Zakary Doherty
- Research Fellow, School of Rural Health, Monash University, Melbourne, VIC, Australia
| | - Robert W. Greer
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alistair McEwan
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, Australia
| | - Mark Tracy
- Neonatal Intensive Care Unit, Westmead Hospital, Sydney, NSW, Australia
- Department of Paediatrics and Child Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter C. Laussen
- Department of Anesthesia, Boston Children's Hospital, Boston, MA, United States
| | - Azadeh Assadi
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Engineering and Applied Sciences, Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mjaye Mazwi
- Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
High-dimensional role of AI and machine learning in cancer research. Br J Cancer 2022; 126:523-532. [PMID: 35013580 PMCID: PMC8854697 DOI: 10.1038/s41416-021-01689-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/12/2023] Open
Abstract
The role of Artificial Intelligence and Machine Learning in cancer research offers several advantages, primarily scaling up the information processing and increasing the accuracy of the clinical decision-making. The key enabling tools currently in use in Precision, Digital and Translational Medicine, here named as 'Intelligent Systems' (IS), leverage unprecedented data volumes and aim to model their underlying heterogeneous influences and variables correlated with patients' outcomes. As functionality and performance of IS are associated with complex diagnosis and therapy decisions, a rich spectrum of patterns and features detected in high-dimensional data may be critical for inference purposes. Many challenges are also present in such discovery task. First, the generation of interpretable model results from a mix of structured and unstructured input information. Second, the design, and implementation of automated clinical decision processes for drawing disease trajectories and patient profiles. Ultimately, the clinical impacts depend on the data effectively subjected to steps such as harmonisation, integration, validation, etc. The aim of this work is to discuss the transformative value of IS applied to multimodal data acquired through various interrelated cancer domains (high-throughput genomics, experimental biology, medical image processing, radiomics, patient electronic records, etc.).
Collapse
|
3
|
Amirmahani F, Ebrahimi N, Molaei F, Faghihkhorasani F, Jamshidi Goharrizi K, Mirtaghi SM, Borjian‐Boroujeni M, Hamblin MR. Approaches for the integration of big data in translational medicine: single‐cell and computational methods. Ann N Y Acad Sci 2021; 1493:3-28. [DOI: 10.1111/nyas.14544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Farzane Amirmahani
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology University of Isfahan Isfahan Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology University of Isfahan Isfahan Iran
| | - Fatemeh Molaei
- Department of Anesthesiology, Faculty of Paramedical Jahrom University of Medical Sciences Jahrom Iran
| | | | | | | | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| |
Collapse
|