1
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
2
|
WANG Y, CHEN L. [Research Progress of Circular RNA CircHIPK3 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:629-636. [PMID: 39318256 PMCID: PMC11425674 DOI: 10.3779/j.issn.1009-3419.2024.106.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 09/26/2024]
Abstract
Lung cancer ranks among the most prevalent and deadliest malignancies worldwide. Despite significant strides in targeted therapies and immunotherapy for lung cancer, curing the disease remains a highly prioritized issue. Circular RNAs (circRNAs), recently discovered RNA molecules characterized by covalently closed loop structures, possess features such as structural stability, sequence conservation, and disease-specific expression. Cutting-edge medical research has linked circRNA dysregulation to the progression of various cancers. Among these, circular RNA HIPK3 (circHIPK3), an oncogenic gene primarily derived from the second exon of the HIPK3 gene, has emerged as a focal point of investigation. Increasing evidences suggest that circHIPK3 is involved in the development of non-small cell lung cancer (NSCLC) and other malignancies. Aberrant expression of circHIPK3 is closely associated with the disease mechanisms, diagnosis, treatment, and prognosis of NSCLC. This review discusses the latest research advancements on circHIPK3 in NSCLC, aiming to promote precise diagnosis and treatment of lung cancer.
.
Collapse
|
3
|
Lyu S, Liu S, Guo X, Zhang Y, Liu Z, Shi S, Li W, Pei J, Fan Y, Sun H. hP-MSCs attenuate severe acute pancreatitis in mice via inhibiting NLRP3 inflammasome-mediated acinar cell pyroptosis. Apoptosis 2024; 29:920-933. [PMID: 38625481 DOI: 10.1007/s10495-024-01946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.
Collapse
Affiliation(s)
- Shuang Lyu
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
- General Surgery Center of PLA and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Shuirong Liu
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Xin Guo
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yaolei Zhang
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Zhongyu Liu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shan Shi
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Wenya Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Juan Pei
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Yonghong Fan
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
| | - Hongyu Sun
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
- General Surgery Center of PLA and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China.
| |
Collapse
|
4
|
Yi YS. MicroRNA-mediated epigenetic regulation of inflammasomes in inflammatory responses and immunopathologies. Semin Cell Dev Biol 2024; 154:227-238. [PMID: 36437174 DOI: 10.1016/j.semcdb.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Inflammation represents the first-line defense mechanism of the host against pathogens and cellular stress. One of the most critical inflammatory responses is characterized by the activation of inflammasomes, intracellular multiprotein complexes that induce inflammatory signaling pathways in response to various pathogen-associated molecular patterns or danger-associated molecular patterns under physiological and pathological conditions. Inflammasomes are tightly regulated in normal cells, and dysregulation of these complexes is observed in various pathological conditions, especially inflammatory diseases and cancers. Epigenetic regulation has been suggested as a key mechanism in modulating inflammasome activity, and microRNAs (miRNAs) have been implicated in the post-transcriptional regulation of inflammasomes. Therefore, miRNA-mediated epigenetic regulation of inflammasomes in pathological conditions has received considerable attention, and current strategies for targeting inflammasomes have been shown to be effective in the treatment of diseases associated with inflammasome activation. This review summarizes recent studies suggesting the roles of miRNAs in the epigenetic control of inflammasomes and highlights the potential of miRNAs as a therapeutic tool for treating human diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, South Korea.
| |
Collapse
|
5
|
Cai Z, Liu F, Li Y, Bai L, Feng M, Li S, Ma W, Shi S. Functional micro-RNA drugs acting as a fate manipulator in the regulation of osteoblastic death. NANOSCALE 2023; 15:12840-12852. [PMID: 37482769 DOI: 10.1039/d3nr02318d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Bone loss is prevalent in clinical pathological phenomena such as osteoporosis, which is characterized by decreased osteoblast function and number, increased osteoclast activity, and imbalanced bone homeostasis. However, current treatment strategies for bone diseases are limited. Regulated cell death (RCD) is a programmed cell death pattern activated by the expression of specific genes in response to environmental changes. Various studies have shown that RCD is closely associated with bone diseases, and manipulating the death fate of osteoblasts could contribute to effective bone treatment. Recently, microRNA-targeting therapy drugs have emerged as a potential solution because of their precise targeting, powerful curative effect, and limited side effects. Nevertheless, their clinical application is limited by their inherent instability, easy enzymatic degradation, and poor membrane penetrability. To address this challenge, a self-assembling tetrahedral DNA nanostructure (TDN)-based microRNA (Tmi) delivery system has been proposed. TDN features excellent biocompatibility, cell membrane penetrability, serum stability, and modification versatility, making it an ideal nucleic acid carrier for miRNA protection and intracellular transport. Once inside cells, Tmi can dissociate and release miRNAs to manipulate key molecules in the RCD signaling pathway, thereby regulating bone homeostasis and curing diseases caused by abnormal RCD activation. In this paper, we discuss the impact of the miRNA network on the initiation and termination of four critical RCD programs in bone tissues: apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we present the Tmi delivery system as a miRNA drug vector. This provides insight into the clinical translation of miRNA nucleic acid drugs and the application of miRNA drugs in bone diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Long Bai
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maogeng Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Li H, Wu D, Zhang H, Li P. New insights into regulatory cell death and acute pancreatitis. Heliyon 2023; 9:e18036. [PMID: 37519748 PMCID: PMC10372241 DOI: 10.1016/j.heliyon.2023.e18036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Acute pancreatitis (AP) may be associated with both local and systemic complications. Although it is usually self-limiting, up to 20% of patients develop severe acute pancreatitis (SAP), which leads to systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction and failure affecting the lung, kidney, liver and heart. Patients who survive the condition frequently develop devastating long-term consequences such as diabetes mellitus, exocrine pancreatic insufficiency, chronic pancreatitis (CP) and poor quality of life. A lack of specific targeted treatments is the main reason for high mortality and morbidity, indicating that more research on the pathogenesis of AP is needed. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of AP, including mechanisms of calcium-mediated acinar cell injury and death, the cytoprotective role of the unfolded protein response (UPR) and autophagy in preventing sustained endoplasmic reticulum stress (ERs); however, the mechanism of parenchymal cell death is relatively poorly understood. This paper reviews the research progress of the regulatory cell death (RCD) mode in the pathogenesis of AP, providing some new insights and regulatory targets for the pathogenesis and treatment of AP, facilitating better targeted drug development.
Collapse
|
7
|
Wang X, Qian J, Meng Y, Wang P, Cheng R, Zhou G, Zhu S, Liu C. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways. Heliyon 2023; 9:e13225. [PMID: 36747537 PMCID: PMC9898447 DOI: 10.1016/j.heliyon.2023.e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Our previous studies showed that Salidroside (Sal), a glucoside of the phenylpropanoid tyrosol isolated from Rhodiola rosea L, alleviated severe acute pancreatitis (SAP) by inhibiting inflammation. However, the detailed mechanism remains unclear. Recent evidence has indicated a critical role of Sal in ameliorating inflammatory disorders by regulating pyroptosis. The present study aimed to explore the involvement of Sal and pyroptosis in the pathogenesis of SAP and investigate the potential mechanism. The effects of Sal on pyroptosis were first evaluated using SAP rat and cell model. Our results revealed that Sal treatment significantly decreased SAP-induced pancreatic cell damage and pyroptosis in vivo and in vitro, as well as reduced the release of lactate dehydrogenase (LDH), IL-1β and IL-18. Search Tool for Interacting Chemicals (STITCH) online tool identified 4 genes (CASP3, AKT1, HIF1A and IL10) as candidate targets of Sal in both rattus norvegicus and homo sapiens. Western blot and immunohistochemistry staining validated that Sal treatment decreased the phosphorylation levels of Akt and NF-κB p65, as well as cleaved caspase-3 and N-terminal fragments of GSDME (GSDME-N), suggesting that Sal might suppress pyroptosis through inactivating Akt/NF-κB and Caspase-3/GSDME pathways. Furthermore, overexpression of AKT1 or CASP3 could partially reverse the inhibitory effects of Sal on cell injury and pyroptosis, while downregulation of AKT1 or CASP3 promoted the inhibitory effects of Sal. Taken together, our data indicate that Sal suppresses SAP-induced pyroptosis through inactivating Akt/NF-κB and Caspase-3/GSDME pathways.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China,Corresponding author.
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Yun Meng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Ping Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Ruizhi Cheng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China
| |
Collapse
|
8
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Zhang C, Zhang C, Huang C, Ji J, Liu J, Lu Y. Hsa_circ_0012919 promotes pyroptosis in CD4+T cells of systemic lupus erythematous by miR-125a-3p/GSDMD axis. Exp Dermatol 2023; 32:41-49. [PMID: 36164970 DOI: 10.1111/exd.14680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
The etiology of systemic lupus erythematous (SLE) remains unclear. Pyroptosis, a new model of programmed cell death, was poorly explored in the pathogenesis of SLE. We found cell pyroptosis in CD4+T cells of SLE patients and kidneys from MRL/lpr mice by examining caspase-1 and gasdermin D (GSDMD) in by RT-PCR, Western blot, and levels of IL-1β, IL-18 and TNF-α were detected by RT-PCR and Elisa. Expression of caspase-1 and GSDMD and levels of IL-1β, IL-18, TNF-α decreased significantly after downregulation of hsa_circ_0012919 (p < 0.05). Inhibition of miR-125a-3p enhanced expression of caspase-1 and GSDMD (p < 0.05), and increased the release of IL-1β, IL-18 and TNF-α (p < 0.05), thereby counteracting the effect of hsa_circ_0012919 knockdown on pyroptosis. Finally, we identified GSDMD as the target gene of miR-125a-3p. Silencing GSDMD reversed the effect of 5-aza-deoxycytidine in increasing release of IL-1β, IL-18, TNF-α and activating caspase-1, but it could be reversed by miR-125a-3p inhibitor. In conclusion, hsa_circ_0012919 regulated the pyroptosis in the CD4+ T cells of SLE patients by miR-125a-3p/GSDMD axis.
Collapse
Affiliation(s)
- Chengzhong Zhang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Chen Huang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ji
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Wei Z, Shi Y, Xue C, Li M, Wei J, Li G, Xiong W, Zhou M. Understanding the Dual Roles of CircHIPK3 in Tumorigenesis and Tumor Progression. J Cancer 2022; 13:3674-3686. [PMID: 36606192 PMCID: PMC9809309 DOI: 10.7150/jca.78090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
CircHIPK3 is a type of endogenous circular RNA, which contains a covalently closed circular structure and cannot encode protein or polypeptide. CircHIPK3 is unusually expressed in varieties of tumors and plays dual roles of tumor promotion or tumor inhibition in tumorigenesis and development of tumors by serving as the sponge for miRNA in multiple tumors. Here, we reviewed the differential expression, the dual functions, the regulation mechanism, and the network in a variety of tumors as well as the potential value for the diagnosis and treatment of tumors, which are of great significance for our comprehensive understanding of the roles and mechanisms of circHIPK3 in tumors.
Collapse
Affiliation(s)
- Zeyu Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yijia Shi
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410078, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.,Cancer Research Institute, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan 410078, China.,✉ Corresponding author: Ming Zhou, E-mail:
| |
Collapse
|
11
|
Qu R, Liu J, Feng L, Li L, Liu J, Sun F, Sun L. Down-regulation of KLF9 ameliorates LPS-caused acute lung injury and inflammation in mice via reducing GSDMD expression. Autoimmunity 2022; 55:587-596. [PMID: 35993279 DOI: 10.1080/08916934.2022.2114465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute lung injury (ALI) is considered as a severe respiratory disease with aggravated inflammatory responses. Krüppel-like factor 9 (KLF9), a member of KLF family, has been reported to be involved in inflammatory disorders. However, the effect of KLF9 in ALI has not been elucidated. Here the present study was to clarify the role of KLF9 and its mechanism in ALI. The ALI in vitro model was established with lipopolysaccharide (LPS)-treated RAW264.7 cells. Mice were injected with LPS to conduct an ALI in vivo model. The expression of KLF9 and gasdermin D (GSDMD) was examined using quantitative reverse transcription-PCR, haematoxylin-eosin/immunohistochemistry staining and western blot assays. Enzyme-linked immunosorbent assay was employed to detect the levels of inflammatory cytokines. JASPAR database was used to predict the recognition motif of KLF9, and the relationship between KLF9 and GSDMD was determined by luciferase reporter assay and chromatin immunoprecipitation analysis. The number of neutrophils in bronchoalveolar lavage fluid as well as the wet/dry weight ratio was caculated. The results showed that The expression of KLF9 in lung was significantly increased in LPS-stimulated mice. Moreover, KLF9 knockout relieved the lung injury in ALI mice. GSDMD is one of targets genes of the transcription factor KLF9. KLF9 knockout induced a decreased expression of GSDMD in LPS-treated mice. Furthermore, in RAW264.7 cells after LPS administration, KLF9 knockdown reduced the levels of inflammatory factors and suppressed the expression of GSDMD. In summarise, these findings exhibited that KLF9 knockout could mitigate the lung injury and inflammatory responses in ALI mice by directly regulating GSDMD.
Collapse
Affiliation(s)
- Renliang Qu
- Department of Laboratory Medicine, Qishan Hospital, Yantai, Shandong, China
| | - Jingjing Liu
- Department of Laboratory Medicine, Qishan Hospital, Yantai, Shandong, China
| | - Lili Feng
- Department of Microbiology Laboratory, Huangdao District Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Lianbing Li
- Health Center of Shuidao Town, Yantai, Shandong, China
| | - Junwei Liu
- Department of Laboratory Medicine, Qishan Hospital, Yantai, Shandong, China
| | - Fengnan Sun
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, Shandong, China
| | - Lin Sun
- Department of Laboratory Medicine, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
12
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
13
|
Huang H, Chen W, Lu J, Zhang S, Xiang X, Wang X, Tang G. Circ_0000284 Promoted Acute Pancreatitis Progression through the Regulation of miR-10a-5p/Wnt/β-Catenin Pathway. Chem Biodivers 2022; 19:e202101006. [PMID: 35581162 DOI: 10.1002/cbdv.202101006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) have been found to be involved in the progression of acute pancreatitis (AP). The objective of our study was to investigate the effects of circ_0000284 on caerulein-induced AR42J cell injury. To mimic AP in vitro, rat pancreatic acinar AR42J cells were treated with caerulein. The expression of circ_0000284 and miR-10a-5p was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Enzyme-linked immunosorbent assay (ELISA) was employed to determine the content of inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor α (TNF-α). Western blotting was applied to analyze the levels of Wnt/β-catenin pathway-related and apoptosis-related proteins. Cell viability and apoptosis were monitored by Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The target connection between circ_0000284 and miR-10a-5p was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. AP induced inflammation in patients, and caerulein treatment increased apoptosis and inflammation in AR42J cells. Circ_0000284 was upregulated in serum of AP patients and caerulein-induced AR42J cells, while Wnt/β-catenin pathway was inactivated. Knockdown of circ_0000284 could decrease apoptosis and inflammation in caerulein-induced AR42J cells, which was attenuated by miR-10a-5p inhibition or Wnt signaling pathway antagonist Dickkopf-related protein 1 (DKK1). MiR-10a-5p was sponged by circ_000028 and was downregulated in caerulein-induced AR42J cells. Circ_0000284 depletion could protect caerulein-induced AR42J cells from apoptosis and inflammation by upregulating miR-10a-5p expression and activating Wnt/β-catenin pathway, underscoring a potential target for AP therapy.
Collapse
Affiliation(s)
- Huali Huang
- Department of Gastroenterology, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, P. R., China
| | - Wenjing Chen
- Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Jiefu Lu
- Department of Gastroenterology, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, P. R., China
| | - Shiyu Zhang
- Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Xuelian Xiang
- Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
| | - Xianmo Wang
- Department of clinical laboratory, The First People's Hospital of ingzhou, Hubei Province, P. R., China
| | - Guodu Tang
- Guangxi Medical University, Guangxi International Zhuang Medicine Hospital, No. 22 Shuangcong Road, Qingxiu District, Nanning, 530021, P. R. China
| |
Collapse
|
14
|
Gao L, Jiang Z, Han Y, Li Y, Yang X. Regulation of Pyroptosis by ncRNA: A Novel Research Direction. Front Cell Dev Biol 2022; 10:840576. [PMID: 35419365 PMCID: PMC8995973 DOI: 10.3389/fcell.2022.840576] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Pyroptosis is a novel form of programmed cell death (PCD), which is characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents. The process of pyroptosis is performed by certain inflammasome and executor gasdermin family member. Previous researches have manifested that pyroptosis is closely related to human diseases (such as inflammatory diseases) and malignant tumors, while the regulation mechanism of pyroptosis is not yet clear. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) have been widely identified in the genome of eukaryotes and played a paramount role in the development of cell function and fate after transcription. Accumulating evidences support the importance of ncRNA biology in the hallmarks of pyroptosis. However, the associations between ncRNA and pyroptosis are rarely reviewed. In this review, we are trying to summarize the regulation and function of ncRNA in cell pyroptosis, which provides a new research direction and ideas for the study of pyroptosis in different diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
15
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
16
|
Huang ZW, Tan P, Yi XK, Chen H, Sun B, Shi H, Mou ZQ, Cheng YL, Li TX, Li Q, Fu WG. Sinapic Acid Alleviates Acute Pancreatitis in Association with Attenuation of Inflammation, Pyroptosis, and the AMPK/NF-κB Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2185-2197. [DOI: 10.1142/s0192415x2250094x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Among the diseases of the digestive system, the incidence of acute pancreatitis (AP) has increased. Although the AP is primarily self-limited, mortality remains high when it progressed to severe acute pancreatitis (SAP). Despite significant advances in new drug development, treatments for AP are not ideal. Here, we discovered a novel hydroxycinnamic acid, sinapic acid (SA), which is widely distributed in plants and is an effective treatment for AP. Using in vitro and in vivo models, we demonstrated that pretreatment with SA ameliorated cerulein-induced pancreatic damage and inflammation and inhibited the activation of Caspase-1 and Caspase-11, which mediate pyroptosis of pancreatic acinar cells during AP. These effects may occur through the inhibition of AMPK phosphorylation and downregulation of NF-[Formula: see text]B. Our findings demonstrate the therapeutic effects and reveal the underlying mechanisms of SA, which warrants its further study as an effective treatment for AP.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Xiao-Kang Yi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Hao Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Bo Sun
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Hao Shi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Zhi-Qiang Mou
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Yong-Lang Cheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Tong-Xi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Qiu Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| | - Wen-Guang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
17
|
Ren S, Pan L, Yang L, Niu Z, Wang L, Gao Y, Liu J, Liu Z, Pei H. Interfering hsa_circ_0073748 alleviates caerulein-induced ductal cell injury in acute pancreatitis by inhibiting miR-132-3p/TRAF3/NF-κB pathway. Cell Cycle 2021; 21:172-186. [PMID: 34882521 DOI: 10.1080/15384101.2021.2014653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNA hsa_circ_0073748 (circ_0073748) is upregulated in patients with acute pancreatitis (AP), a clinically common sudden inflammatory response. MicroRNA (miR)-132-3p is a stress-induced factor with high conservation between species. Herein, expression and role of circ_0073748 and miR-132-3p in caerulein-induced pancreatitis were studied. Expression levels of circ_0073748, miR-132-3p, TNF receptor associated factor 3 (TRAF3), Bcl-2 and Bcl-2-associated X protein (Bax) were examined by reverse transcription-quantitative PCR and Western blotting. Cell proliferation was measured by MTS and EdU assays. Flow cytometry and assay kits detected apoptosis, inflammatory, and oxidative responses. Western blotting detected nuclear factor (NF)-κB signaling pathway. Circ_0073748 was upregulated and miR-132-3p was downregulated in AP patients' plasma and human pancreatic ductal HPDE6-C7 cells with caerulein induction. Interfering circ_0073748 and reinforcing miR-132-3p improved cell viability, EdU incorporation, and superoxide dismutase (SOD) activity of caerulein-treated HPDE6-C7 cells but suppressed malonaldehyde (MDA), IL-6 and TNF-α levels and apoptosis rate. Moreover, TRAF3 downregulation was allied with circ_0073748 silencing and miR-132-3p overexpression in caerulein-induced HPDE6-C7 cells. Mechanically, circ_0073748 was identified as a sponge for miR-132-3p to modulate TRAF3 expression, thus establishing a competitive endogenous RNA (ceRNA) regulation model. Notably, circ_0073748 blockage could suppress expressions of phosphorylated P65 (p-P65) and p-IκB in caerulein-induced HPDE6-C7 cells by promoting miR-132-3p and inhibiting TRAF3. Silencing circ_0073748 and upregulating miR-132-3p could alleviate caerulein-induced HPDE6-C7 injury and inactivate canonical NF-κB signal by inhibiting TRAF3. Circ_0073748/miR-132-3p/TRAF3 ceRNA pathway might be one underlying mechanism and therapeutic target of caerulein-induced AP.
Collapse
Affiliation(s)
- Song Ren
- Department of Geriatric Digestive Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Linqing Yang
- Department of Nursing, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zequn Niu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanxia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Wu J, Zhang J, Zhao J, Chen S, Zhou T, Xu J. Treatment of Severe Acute Pancreatitis and Related Lung Injury by Targeting Gasdermin D-Mediated Pyroptosis. Front Cell Dev Biol 2021; 9:780142. [PMID: 34858995 PMCID: PMC8632453 DOI: 10.3389/fcell.2021.780142] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
The functional relevance and effects of the pyroptosis executioner gasdermin D (GSDMD) on severe acute pancreatitis (SAP)-associated lung injury are unclear. We established caerulein-induced mouse models of SAP-associated lung injury, which showed that GSDMD-mediated pyroptosis was activated in both pancreatic and lung tissues. Compared with Gsdmd wild-type SAP mouse models, Gsdmd knockout (Gsdmd–/–) ameliorated SAP-induced pancreas and related lung injury. Additionally, we investigated the effects of disulfiram on the treatment of SAP. Disulfiram is a Food and Drug Administration (FDA)-approved anti-alcoholism drug, which is reported as an effective pyroptosis inhibitor by either directly covalently modifying GSDMD or indirectly inhibiting the cleavage of GSDMD via inactivating Nod-like receptor protein 3 inflammasome. We demonstrated that disulfiram inhibited the cleavage of GSDMD, alleviated caerulein-induced SAP and related lung injury, and decreased the expression levels of proinflammatory cytokines (IL-1β and IL-18). Collectively, these findings disclosed the role of GSDMD-mediated pyroptosis in SAP and the potential application of disulfiram in the treatment of SAP.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiping Zhao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Chen
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Protective Effect of miR-193a-5p and miR-320-5p on Caerulein-Induced Injury in AR42J Cells. Dig Dis Sci 2021; 66:4333-4343. [PMID: 33405047 DOI: 10.1007/s10620-020-06800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute pancreatitis is a common inflammatory disease. MicroRNAs have been implicated in the pathogenesis of acute pancreatitis. AIMS The purpose of this study was to investigate the precise roles of miR-193a-5p and miR-320-5p in AP. METHODS The levels of miR-193a-5p, miR-320-5p and tumor necrosis factor receptor-associated factor 3 were detected by quantitative real-time polymerase chain reaction. Cell apoptosis was determined using flow cytometry. Enzyme-linked immunosorbent assay was performed to measure TNF-α, IL-6, IL-1β and IL-8 production, amylase activity, and malondialdehyde content. Targeted relationship between miR-193a-5p or miR-320-5p and TRAF3 was confirmed by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Our data showed that miR-193a-5p and miR-320-5p were down-regulated in acute pancreatitis serum and caerulein-treated AR42J cells. The increased expression of miR-193a-5p or miR-320-5p alleviated caerulein-induced cell injury in AR42J cells. Tumor necrosis factor receptor-associated factor 3 was a direct target of miR-193a-5p and miR-320-5p in AR42J cells. Moreover, miR-193a-5p and miR-320-5p regulated caerulein-induced AR42J cells injury through targeting tumor necrosis factor receptor-associated factor 3. CONCLUSION The present findings demonstrated that miR-193a-5p and miR-320-5p protected AR42J cells against caerulein-induced cell injury by targeting tumor necrosis factor receptor-associated factor 3, highlighting their roles as potential therapeutic targets for acute pancreatitis treatment.
Collapse
|
20
|
Sun Q, Liang R, Li M, Zhou H. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitro via reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis. J Pharm Pharmacol 2021; 74:861-868. [PMID: 34850057 DOI: 10.1093/jpp/rgab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs) have been demonstrated to play important roles in acute pancreatitis (AP). Herein, this study aimed to investigate the role and mechanism of circRNAs utrophin (circ_UTRN) in AP. METHODS In vitro cultured rat pancreatic acinar cell line AR42J was exposed to caerulein (10 nmol/L) to mimic an AP cell model. The levels of circ_UTRN and microRNA (miR)-320-3p and protein tyrosine kinase 2 (PTK2) were examined using quantitative real-time polymerase chain reaction and Western blot assays. Cell apoptosis was analysed by flow cytometry and Western blot assays. ELISA was employed to detect the levels of tumour necrosis factor-α (TNF-α), IL-1β and IL-6. The binding interaction between miR-320-3p and circ_UTRN or PTK2 was verified using dual-luciferase reporter assay. KEY FINDINGS The expression of circ_UTRN was decreased by caerulein in pancreatic acinar cells, ectopic overexpression of circ_UTRN reduced inflammation and promoted apoptosis in caerulein-mediated pancreatic acinar cells. In a mechanical study, circ_UTRN served as a sponge of miR-320-3p, and miR-320-3p directly targeted PTK2. Rescue assay suggested that the promotion of apoptosis and inhibition of inflammation induced by circ_UTRN re-expression in caerulein-mediated pancreatic acinar cells were partially abolished by miR-320-3p overexpression or PTK2 knockdown. Besides that, miR-320-3p inhibition impaired caerulein-induced cell apoptosis arrest and inflammation via targeting PTK2. CONCLUSIONS Up-regulation of circ_UTRN in pancreatic acinar cells attenuates caerulein-evoked cell apoptosis arrest and inflammation enhancement via miR-320-3p/PTK2, suggesting that circ_UTRN/miR-320-3p/PTK2 axis might be engaged in caerulein-induced AP.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Gastroenterology, Shangdong Province Third Hospital, Jinan City, Shandong Province, China
| | - Ran Liang
- Nancun Community Health Service Center of Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Mingdong Li
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| | - Hua Zhou
- Department of Gastroenterology, West Hospital District of Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
21
|
Wu J, Yuan XH, Jiang W, Lu YC, Huang QL, Yang Y, Qie HJ, Liu JT, Sun HY, Tang LJ. Genome-wide map of N 6-methyladenosine circular RNAs identified in mice model of severe acute pancreatitis. World J Gastroenterol 2021; 27:7530-7545. [PMID: 34887647 PMCID: PMC8613746 DOI: 10.3748/wjg.v27.i43.7530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a deadly inflammatory disease with complex pathogenesis and lack of effective therapeutic options. N6-methyladenosine (m6A) modification of circRNAs plays important roles in physiological and pathological processes. However, the roles of m6A circRNA in the pathological process of SAP remains unknown.
AIM To identify transcriptome-wide map of m6A circRNAs and to determine their biological significance and potential mechanisms in SAP.
METHODS The SAP in C57BL/6 mice was induced using 4% sodium taurocholate salt. The transcriptome-wide map of m6A circRNAs was identified by m6A-modified RNA immunoprecipitation sequencing. The biological significance of circRNAs with differentially expressed m6A peaks was evaluated through gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The underlying mechanism of m6A circRNAs in SAP was analyzed by constructing of m6A circRNA-microRNA networks. The expression of demethylases was determined by quantitative polymerase chain reaction and western blot to deduce the possible mechanism of reversible m6A process in SAP.
RESULTS Fifty-seven circRNAs with differentially expressed m6A peaks were identified by m6A-modified RNA immunoprecipitation sequencing, of which 32 were upregulated and 25 downregulated. Functional analysis of these m6A circRNAs in SAP found some important pathways involved in the pathogenesis of SAP, such as regulation of autophagy and protein digestion. In m6A circRNA–miRNA networks, several important miRNAs participated in the occurrence and progression of SAP were found to bind to these m6A circRNAs, such as miR-24-3p, miR-26a, miR-92b, miR-216b, miR-324-5p and miR-762. Notably, the total m6A level of circRNAs was reduced, while the demethylase alkylation repair homolog 5 was upregulated in SAP.
CONCLUSION m6A modification of circRNAs may be involved in the pathogenesis of SAP. Our findings may provide novel insights to explore the possible pathogenetic mechanism of SAP and seek new potential therapeutic targets for SAP.
Collapse
Affiliation(s)
- Jun Wu
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Xiao-Hui Yuan
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Wen Jiang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Yi-Chen Lu
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Qi-Lin Huang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
| | - Yi Yang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
| | - Hua-Ji Qie
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Jiang-Tao Liu
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| | - Hong-Yu Sun
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
| | - Li-Jun Tang
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610036, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610036, Sichuan Province, China
| |
Collapse
|
22
|
Wang X, Cai H, Chen Z, Zhang Y, Wu M, Xu X, Yang L. Baicalein alleviates pyroptosis and inflammation in hyperlipidemic pancreatitis by inhibiting NLRP3/Caspase-1 pathway through the miR-192-5p/TXNIP axis. Int Immunopharmacol 2021; 101:108315. [PMID: 34785144 DOI: 10.1016/j.intimp.2021.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hyperlipidemia is a main reason of pancreatitis. Baicalein can ameliorate the pathological manifestations of pancreatitis. This study evaluated underlying molecular mechanism of baicalein in hyperlipidemic pancreatitis (HP). METHODS HP rat model was successfully established and treated with baicalein. Amylase (AMY) activity and concentrations of triglyceride (TG) and total cholesterol (TC) were detected. Levels of pyroptosis-related proteins (GSDMD, IL-1β, IL-18) were detected by Western blot. Expressions of inflammatory factors (IL-6, TNF-α, IL-4) were detected by ELISA. Toxicity of baicalein on pancreatic acinar cells (PACs) was detected by MTT assay. HP cell model was established by 0.1 mM palmitic acid and CCK-8 stimulation. Target relation of miR-192-5p and TXNIP was predicted and verified by RNA22 v2 database and dual-luciferase reporter assay. Expressions of miR-192-5p and TXNIP were detected by RT-qPCR. Pyroptosis and inflammation in PACs were detected after baicalein treatment combined with silencing miR-192-5p or TXNIP overexpression. Protein levels of NLRP3/Caspase-1 pathway in vivo and vitro were detected. RESULTS Baicalein reduced concentrations of TG and TC, AMY activity, and pathological scores in HP rat model, reduced LDH activity, pyroptosis and alleviated inflammation in vivo and in vitro. Mechanically, miR-192-5p targeted TXNIP, and baicalein inhibited pyroptosis and inflammation by up-regulating miR-192-5p and down-regulating TXNIP. Silencing miR-192-5p or TXNIP overexpression partially abolished the anti-pyroptosis and anti-inflammatory effect of baicalein on PACs. Baicalein attenuated HP by inhibiting the NLRP3/Caspase-1 pathway. CONCLUSION Baicalein alleviated pyroptosis and inflammation in HP by inhibiting the NLRP3/Caspase-1 pathway through miR-192-5p upregulation and TXNIP inhibition.
Collapse
Affiliation(s)
- Xiangyang Wang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Hua Cai
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Zhiyuan Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Yu Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Minghao Wu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Li Yang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China.
| |
Collapse
|
23
|
Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 2021; 227:153618. [PMID: 34649056 DOI: 10.1016/j.prp.2021.153618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a drastic renal complication of type 1 and type 2 diabetes mellitus (DM). Poorly controlled DM over the years, may disrupt kidneys' blood vessels, leading to the hypertension (HTN) and DN onset. During DN, kidneys' waste filtering ability becomes disturbed. Being on a healthy lifestyle and controlling both DM and HTN are now the best proceedings to prevent or at least delay DN occurrence. Unfortunately, about one-fourth of diabetic individuals eventually experience the corresponding renal failure, and thus it is critical to discover effective diagnostic biomarkers and therapeutic strategies to combat DN. In the past few years, circular RNAs (circRNAs), as covalently closed endogenous non-coding RNAs (ncRNAs), are believed to affect DN pathogenesis in a positive manner. CircRNAs are able to impact different cellular processes and signaling pathways by targeting biological molecules or various molecular mechanisms. Still, as a key regulatory axis, circRNAs can select miRNAs as their molecular targets, in which they are considered as miRNA sponges. In this way, circRNA-induced suppression of particular miRNAs may prevent from DN progression or promotes the DN elimination. Since the expression of circRNAs has also been reported to be increased in DN-associated cells and tissues, they can be employed as either diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marziyeh Salami
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Raziyeh Salami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran; Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
24
|
Sun B, Chen Z, Chi Q, Zhang Y, Gao B. Endogenous tRNA-derived small RNA (tRF3-Thr-AGT) inhibits ZBP1/NLRP3 pathway-mediated cell pyroptosis to attenuate acute pancreatitis (AP). J Cell Mol Med 2021; 25:10441-10453. [PMID: 34643045 PMCID: PMC8581331 DOI: 10.1111/jcmm.16972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Endogenous transfer RNA‐derived small RNAs (tsRNAs) are newly identified RNAs that are closely associated with the pathogenesis of multiple diseases, but the involvement of tsRNAs in regulating acute pancreatitis (AP) development has not been reported. In this study, we screened out a novel tsRNA, tRF3‐Thr‐AGT, that was aberrantly downregulated in the acinar cell line AR42J treated with sodium taurocholate (STC) and the pancreatic tissues of STC‐induced AP rat models. In addition, STC treatment suppressed cell viability, induced pyroptotic cell death and cellular inflammation in AP models in vitro and in vivo. Overexpression of tRF3‐Thr‐AGT partially reversed STC‐induced detrimental effects on the AR42J cells. Next, Z‐DNA‐binding protein 1 (ZBP1) was identified as the downstream target of tRF3‐Thr‐AGT. Interestingly, upregulation of tRF3‐Thr‐AGT suppressed NOD‐like receptor protein 3 (NLRP3)‐mediated pyroptotic cell death in STC‐treated AR42J cells via degrading ZBP1. Moreover, the effects of tRF3‐Thr‐AGT overexpression on cell viability and inflammation in AR42J cells were abrogated by upregulating ZBP1 and NLRP3. Collectively, our data indicated that tRF3‐Thr‐AGT suppressed ZBP1 expressions to restrain NLRP3‐mediated pyroptotic cell death and inflammation in AP models. This study, for the first time, identified the role and potential underlying mechanisms by which tRF3‐Thr‐AGT regulated AP pathogenesis.
Collapse
Affiliation(s)
- Boshi Sun
- The 3rd Department of General Surgery, The 2ndAffiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuomiaoyu Chen
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Qiang Chi
- The 3rd Department of General Surgery, The 2ndAffiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yifan Zhang
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| | - Bo Gao
- Department of General Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
25
|
Research progress of pyroptosis in acute pancreatitis. Chin Med J (Engl) 2021; 134:2160-2162. [PMID: 34310391 PMCID: PMC8478374 DOI: 10.1097/cm9.0000000000001589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin Transl Oncol 2021; 23:2497-2506. [PMID: 34142340 DOI: 10.1007/s12094-021-02650-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Prostate cancer (PCa) is one of the most diagnosed cancers in men worldwide. Several studies have identified that circular RNAs (circRNAs) have a crucial impact on the biological processes in PCa. Therefore, it is necessary to study the molecular mechanism of circRNAs in tumor progression and metastasis. METHODS RNA interference was used to decrease circHIPK3 and MTDH expression. Overexpression vector was used to increase circHIPK3 and MTDH expression. Luciferase reporter assay were used to detect the relationship between circHIPK3 and miR-448 or between miR-448 and MTDH. MTT assay, colony formation assay and transwell assay were used to measure proliferation and migration of PCa cells. RESULTS Circular RNA circHIPK3 was significantly increased in PCa tissues and cell lines. And overexpression of circHIPK3 promoted the migration, proliferation, and invasion of PC-3 and 22Rv1 cells, while knockdown of circHIPK3 markedly repressed the above-mentioned series of biological processes. Furthermore, circHIPK3 promoted metadherin (MTDH) expression by sponging miR-448. In vivo experiments, it was also found that overexpression of circHIPK3 significantly promoted tumor growth. CONCLUSIONS Our research shows that circHIPK3 plays a carcinogenic effect in PCa by regulating the miR-448/MTDH axis, indicating that circHIPK3 may be a potential therapeutic target for PCa.
Collapse
|
27
|
Fu Y, Sun H. Biogenesis, cellular effects, and biomarker value of circHIPK3. Cancer Cell Int 2021; 21:256. [PMID: 33975598 PMCID: PMC8111742 DOI: 10.1186/s12935-021-01956-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) can indirectly regulate gene expression by competitively binding to microRNA(miRNA) through miRNA response elements (MREs) to affect miRNA-induced gene regulation, which is of great biological significance. Among them, circular RNA (circRNA) has become a hotspot due to its highest binding capacity. A specific circRNA discussed in this review, circHIPK3, has been studied for its biological characteristics, function, cellular effects and its relationship with tumors and various diseases. Here, we review the recent researches about circHIPK3 in detail and aim to elucidate accurate conclusions from them. These circHIPK3-miRNAs-mRNA pathways will further advance the application of circHIPK3 in diseases development, early diagnosis and gene targeting therapy.
Collapse
Affiliation(s)
- Yihan Fu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hong Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Wang J, Fu J, Xu C, Jia R, Zhang X, Zhao S. Circ_ZFP644 attenuates caerulein-induced inflammatory injury in rat pancreatic acinar cells by modulating miR-106b/Pias3 axis. Exp Mol Pathol 2021; 121:104644. [PMID: 33945806 DOI: 10.1016/j.yexmp.2021.104644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
(AP) is a kind of inflammatory misorder existing in pancreas. Non-coding RNAs (ncRNAs) have been reported to play important roles in development of AP. The current study was designed to explore the role of circular RNA zinc finger protein 644 (circRNA circ_ZFP644) in caerulein-induced AR42J cells. AP model in vitro was established by exposure of rat pancreatic acinar AR42J cells to caerulein. Amylase activity was measured using a kit. Enzyme-linked immunosorbent assay (ELISA) was performed to examine the levels of several inflammatory factors. The expression of circ_ZFP644, microRNA (miR)-106b and protein inhibitor of activated STAT 3 (Pias3) was detected by quantitative real-time PCR (qRT-PCR) or western blot assay. And flow cytometry was employed to monitor cell apoptosis. Western blot assay was also conducted to analyze the expression of apoptosis-related proteins. The association among circ_ZFP644, miR-106b and Pias3 was validated by dual-luciferase reporter assay. Caerulein treatment activated amylase activity and promoted the secretion of inflammatory cytokines in AR42J cells. Circ_ZFP644 and Pias3 were downregulated, but miR-106b was upregulated in caerulein-induced AR42J cells. Enforced expression of circ_ZFP644 or miR-106b inhibition could reduce amylase activity and inflammatory cytokine secretion, while promote apoptosis in caerulein-induced AR42J cells, which was almost reversed by Pias3 knockdown. Circ_ZFP644 targeted miR-106b to upregulate Pias3 expression. Circ_ZFP644 might exert its anti-inflammation and pro-apoptosis roles in caerulein-induced AR42J cells by regulating miR-106b/Pias3 axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jindong Fu
- Department of Gastroenterology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Changqin Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruzhen Jia
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohua Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shulei Zhao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
29
|
Shao Q, Huang Y, Zhang C, Gao X, Gao S. Emerging landscape of circHIPK3 and its role in cancer and other diseases (Review). Mol Med Rep 2021; 23:409. [PMID: 33786629 PMCID: PMC8025471 DOI: 10.3892/mmr.2021.12048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of recently re‑discovered RNAs, which are covalently closed ring RNA molecules. circRNAs have been reported to possess multiple functions and are considered crucial regulators of several processes, and are therefore gaining increasing attention. In recent years, increasing evidence has shown that circRNAs are implicated in several crucial biological processes via regulation of gene expression, and their dysregulation is also associated with the development of numerous diseases, particularly acting as oncogenic or tumor‑suppressor molecules in cancer. Furthermore, circRNAs are involved in cell proliferation, differentiation, apoptosis, invasion and metastasis. In the present review, the biogenesis and functions of circRNAs are described, with a focus on the most recent research advances and the emerging roles of circular homeodomain‑interacting protein kinase 3 (circHIPK3) in human diseases. The present review may provide novel avenues for research on the roles of circHIPK3 as a clinical diagnostic and prognostic biomarker, as well as highlighting promising therapeutic targets for certain diseases and cancer.
Collapse
Affiliation(s)
- Qi Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
30
|
Circ_HIPK3 alleviates CoCl 2-induced apoptotic injury in neuronal cells by depending on the regulation of the miR-222-3p/DUSP19 axis. Biochem Biophys Res Commun 2021; 553:126-133. [PMID: 33770577 DOI: 10.1016/j.bbrc.2021.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Circular RNA (circRNA) homeodomain-interacting protein kinase 3 (circ_HIPK3) has recently reported as regulator in spinal cord injury (SCI). The regulatory mechanism of circ_HIPK3 in SCI was further researched in this study. Circ_HIPK3 expression was inhibited by CoCl2 in AGE1.HN cells. The CoCl2-induced cell cycle arrest, cell proliferation inhibition and apoptosis promotion were mitigated by overexpression of circ_HIPK3. Circ_HIPK3 could target miR-222-3p and circ_HIPK3 repressed the CoCl2-induced neuronal cell injury by sponging miR-222-3p. DUSP19 was a target gene of miR-222-3p and circ_HIPK3 affected the expression of DUSP19 via binding to miR-222-3p. The regulation of circ_HIPK3 in CoCl2-induced injury of AGE1.HN cells was associated with the upregulation of DUSP19. Circ_HIPK3 acted as a pathogenic inhibitor in the progression of SCI via the miR-222-3p-mediated DUSP19 upregulation.
Collapse
|
31
|
Zhang K, Zhang X. MiR-146b-3p protects against AR42J cell injury in cerulein-induced acute pancreatitis model through targeting Anxa2. Open Life Sci 2021; 16:255-265. [PMID: 33817317 PMCID: PMC7968541 DOI: 10.1515/biol-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute pancreatitis (AP) is a common inflammatory disorder. MicroRNAs play crucial roles in the pathogenesis of AP. In this article, we explored the detailed role and molecular mechanisms of miR-146b-3p in AP progression. Methods The rat AR42J cells were treated with cerulein to establish the AP model in vitro. The miR-146b-3p and Annexin A2 (Anxa2) mRNA levels were assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were tested using the Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Caspase-3 activity and the production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay and qRT-PCR. Targeted interaction between miR-146b-3p and Anxa2 was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. Western blot analysis was performed to detect the expression of Anxa2 protein. Results Our data revealed that miR-146b-3p was significantly downregulated in AP samples. The enforced expression of miR-146b-3p alleviated cerulein-induced injury in AR42J cells, as evidenced by the promotion in cell viability and the repression in cell apoptosis, as well as the reduction in IL-1β, IL-6, and TNF-α production. Anxa2 was directly targeted and inhibited by miR-146b-3p. Moreover, the alleviative effect of miR-146b-3p overexpression on cerulein-induced AR42J cell injury was mediated by Anxa2. Conclusions The current work had led to the identification of miR-146b-3p overexpression that protected against cerulein-induced injury in AR42J cells at least in part by targeting Anxa2, revealing a promising target for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- Department of Hepatobiliary Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054001, China.,Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Qiaodong District, Xingtai, Hebei, 054001, China
| | - Xiaoyu Zhang
- Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Qiaodong District, Xingtai, Hebei, 054001, China
| |
Collapse
|
32
|
Zhou J, Wang B, Bin X, Xie C, Li B, Liu O, Tang Z. CircHIPK3: Key Player in Pathophysiology and Potential Diagnostic and Therapeutic Tool. Front Med (Lausanne) 2021; 8:615417. [PMID: 33693013 PMCID: PMC7937734 DOI: 10.3389/fmed.2021.615417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
A large number of studies in China and other countries have confirmed that circularHIPK3 (circHIPK3) plays an important role in the pathophysiological processes of various diseases. Through the action of sponge miRNA (miR), circHIPK3 regulates cell proliferation, differentiation, and migration, and plays a key role in disease processes. By referring to a large number of research reports, this article explores the specific functional role of circHIPK3 in fibrotic diseases, cancer, and other diseases. This review aims to clarify the role of circHIPK3 in disease processes in order to aid further studies into the specific pathogenesis and clinical diagnosis of various diseases and provide new ideas for treatments.
Collapse
Affiliation(s)
- Jiang Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Baisheng Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xin Bin
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Bo Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|