1
|
Liu F, Li C. SIRT1-driven mechanism: sevoflurane's interference with mESC neural differentiation via PRRX1/DRD2 cascade. Hum Mol Genet 2024; 33:1758-1770. [PMID: 39087769 DOI: 10.1093/hmg/ddae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| | - Chenguang Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou 121000, P. R. China
| |
Collapse
|
2
|
Zhang X, Xu J. A novel miR-466l-3p/FGF23 axis promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Bone 2024; 185:117123. [PMID: 38735373 DOI: 10.1016/j.bone.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate osteogenic differentiation processes and influence the development of osteoporosis (OP). This study aimed to investigate the potential role of miR-466 l-3p in OP. METHODS The expression levels of miR-466 l-3p and fibroblast growth factor 23 (FGF23) were quantified in the trabeculae of the femoral neck of 40 individuals with or without OP using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The impact of miR-466 l-3p or FGF23 expression on cell proliferation and the expression levels of runt-related transcription factor 2 (RUNX2), type I collagen (Col1), osteocalcin (OCN), osterix (OSX) and dentin matrix protein 1 (DMP1) was quantified in human bone marrow mesenchymal stem cells (hBMSCs) overexpressing miR-466 l-3p. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were performed to measure ALP activity and the levels of calcium deposition, respectively. In addition, bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays were conducted to explore the molecular mechanisms underlying the effects of miR-466 l-3p and FGF23 in osteogenic differentiation of hBMSCs. RESULTS The expression levels of miR-466 l-3p were significantly lower in femoral neck trabeculae of patients with OP than in the control cohort, whereas FGF23 levels exhibited the opposite trend. Furthermore, miR-466 l-3p levels were upregulated and FGF23 levels were downregulated in hBMSCs during osteogenic differentiation. Moreover, the high miR-466 l-3p expression enhanced the mRNA expression of RUNX2, Col1, OCN, OSX and DMP1, as well as cell proliferation, ALP activity, and calcium deposition in hBMSCs. FGF23 was found to be a direct target of miR-466 l-3p. FGF23 overexpression downregulated the expression of osteoblast markers and inhibited the osteogenic differentiation induced by miR-466 l-3p overexpression. qRT-PCR and Western blot assays showed that miR-466 l-3p overexpression decreased the expression levels of mRNAs and proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, whereas FGF23 upregulation exhibited the opposite trend. CONCLUSION In conclusion, these findings suggest that miR-466 l-3p enhances the osteogenic differentiation of hBMSCs by suppressing FGF23 expression, ultimately preventing OP.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
3
|
Zhao L, Wang Z, Chen H, Du Y, Ma W, Tao Q, Ma X, Wu Z, Peng J. Effects of lncRNA HOXA11-AS on Sevoflurane-Induced Neuronal Apoptosis and Inflammatory Responses by Regulating miR-98-5p/EphA4. Mediators Inflamm 2023; 2023:7750134. [PMID: 37064501 PMCID: PMC10098412 DOI: 10.1155/2023/7750134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Objective To explore the molecular mechanism of sevoflurane-induced neurotoxicity and to determine whether lncRNA HOXA11-AS affects sevoflurane-induced neuronal apoptosis and inflammation by regulating miR-98-5p/EphA4. Methods Morris water maze (MWM) test was used to detect the learning and memory ability of rats, HE staining was used to observe hippocampal pathology, TUNEL staining was used to detect the level of neuronal apoptosis, and RT-qPCR was used to detect the expression of HOXA11-AS, miR-98-5p, IL-6, IL-1β, and TNF-α. At the same time, the contents of IL-6, IL-1β, and TNF-α in serum were detected by ELISA. The expressions of apoptosis-related proteins EphA4, Bax, Cleaved caspase 3, and Bcl-2 were detected by Western blot. The dual-luciferase gene reporter verified the targeting relationship between HOXA11-AS and miR-98-5p and the targeting relationship between miR-98-5p and EphA4. Results The expression of HOXA11-AS was observed in sevoflurane-treated rats or cells and promoted neuronal apoptosis and inflammation. HOXA11-AS was knocked out alone, or miR-98-5p was overexpressed which attenuates neuronal apoptosis and inflammatory inflammation after sevoflurane treatment. Furthermore, knockdown of HOXA11-AS alone was partially restored by knockdown of miR-98-5p or overexpression of EphA4. Conclusion Inhibition of lncRNA HOXA11-AS attenuates sevoflurane-induced neuronal apoptosis and inflammatory responses via miR-98-5p/EphA4.
Collapse
Affiliation(s)
- Li Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Zhonghui Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Haitao Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Yaxi Du
- Department of Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Weihao Ma
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Qunfen Tao
- Department of Operation Room, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Yunnan, China
| | - Xiang Ma
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Zeming Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| | - Jing Peng
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650118 Yunnan, China
| |
Collapse
|
4
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
5
|
Chen X, Shi L, Zhang L, Cheng Y, Xue Z, Yan J, Jiang H. Epitranscriptomic Analysis of N6-methyladenosine in Infant Rhesus Macaques after Multiple Sevoflurane Anesthesia. Neuroscience 2021; 482:64-76. [PMID: 34843896 DOI: 10.1016/j.neuroscience.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022]
Abstract
Clinical investigations to date have proposed the possibility that exposure to anesthetics is associated with neurodevelopmental deficits. Sevoflurane is the most commonly used general anesthetic in pediatric patients. Animal studies have demonstrated that multiple exposures to sevoflurane during the postnatal period resulted in neuropathological brain changes and long-term cognitive deficits. However, the underlying mechanisms remain to be clarified. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was performed to acquire genome-wide profiling of RNA N6-methyladenosine (m6A) in the prefrontal cortex of infant rhesus macaques. The macaques in the sevoflurane group had more m6A peaks than the macaques in the control group (p ≤ 0.05). After sevoflurane treatment, the mRNA levels of YT521-B homology domain family 1 (YTHDF1) and YT521-B homology domain family 3 (YTHDF3) were decreased, and sevoflurane anesthesia dynamically regulated RNA m6A methylation. Gene ontology (GO) analysis revealed that after sevoflurane exposure, genes with increased methylation of m6A sites were enriched in some physiological processes relevant to neurodevelopment, mainly focused on synaptic plasticity. The female macaques had 18 hypermethylated genes. The males had 35 hypermethylated genes, and some physiological processes related to the regulation of synaptic structure were enriched. Rhesus macaques are genetically closer to human beings. Our findings can help in the study of the mechanism of sevoflurane-relevant neurodevelopmental deficits at the posttranscriptional level and can provide new insights into potential clinical preventions and interventions for the neurotoxicity of neonatal anesthesia exposure.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|