1
|
Hof S, Lingens L, Michels M, Marcus C, Kuebart A, Herminghaus A, Bauer I, Picker O, Truse R, Vollmer C. Local carbachol application induces oral microvascular recruitment and improves gastric tissue oxygenation during hemorrhagic shock in dogs. Front Immunol 2024; 15:1369617. [PMID: 38566995 PMCID: PMC10985194 DOI: 10.3389/fimmu.2024.1369617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Hemorrhagic shock is characterized by derangements of the gastrointestinal microcirculation. Topical therapy with nitroglycerine or iloprost improves gastric tissue oxygenation but not regional perfusion, probably due to precapillary adrenergic innervation. Therefore, this study was designed to investigate the local effect of the parasympathomimetic carbachol alone and in combination with either nitroglycerine or iloprost on gastric and oral microcirculation during hemorrhagic shock. Methods In a cross-over design five female foxhounds were repeatedly randomized into six experimental groups. Carbachol, or carbachol in combination with either nitroglycerine or iloprost were applied topically to the oral and gastric mucosa. Saline, nitroglycerine, or iloprost application alone served as control groups. Then, a fixed-volume hemorrhage was induced by arterial blood withdrawal followed by blood retransfusion after 1h of shock. Gastric and oral microcirculation was determined using reflectance spectrophotometry and laser Doppler flowmetry. Oral microcirculation was visualized with videomicroscopy. Statistics: 2-way-ANOVA for repeated measurements and Bonferroni post-hoc analysis (mean ± SEM; p < 0.05). Results The induction of hemorrhage led to a decrease of gastric and oral tissue oxygenation, that was ameliorated by local carbachol and nitroglycerine application at the gastric mucosa. The sole use of local iloprost did not improve gastric tissue oxygenation but could be supplemented by local carbachol treatment. Adding carbachol to nitroglycerine did not further increase gastric tissue oxygenation. Gastric microvascular blood flow remained unchanged in all experimental groups. Oral microvascular blood flow, microvascular flow index and total vessel density decreased during shock. Local carbachol supply improved oral vessel density during shock and oral microvascular flow index in the late course of hemorrhage. Conclusion The specific effect of shifting the autonomous balance by local carbachol treatment on microcirculatory variables varies between parts of the gastrointestinal tract. Contrary to our expectations, the improvement of gastric tissue oxygenation by local carbachol or nitroglycerine application was not related to increased microvascular perfusion. When carbachol is used in combination with local vasodilators, the additional effect on gastric tissue oxygenation depends on the specific drug combination. Therefore, modulation of tissue oxygen consumption, mitochondrial function or alterations in regional blood flow distribution should be investigated.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
3
|
Hof S, Truse R, Weber L, Herminghaus A, Schulz J, Weber APM, Maleckova E, Bauer I, Picker O, Vollmer C. Local Mucosal CO 2 but Not O 2 Insufflation Improves Gastric and Oral Microcirculatory Oxygenation in a Canine Model of Mild Hemorrhagic Shock. Front Med (Lausanne) 2022; 9:867298. [PMID: 35573010 PMCID: PMC9096873 DOI: 10.3389/fmed.2022.867298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Acute hemorrhage results in perfusion deficit and regional hypoxia. Since failure of intestinal integrity seem to be the linking element between hemorrhage, delayed multi organ failure, and mortality, it is crucial to maintain intestinal microcirculation in acute hemorrhage. During critical bleeding physicians increase FiO2 to raise total blood oxygen content. Likewise, a systemic hypercapnia was reported to maintain microvascular oxygenation (μHbO2). Both, O2 and CO2, may have adverse effects when applied systemically that might be prevented by local application. Therefore, we investigated the effects of local hyperoxia and hypercapnia on the gastric and oral microcirculation. Methods Six female foxhounds were anaesthetized, randomized into eight groups and tested in a cross-over design. The dogs received a local CO2-, O2-, or N2-administration to their oral and gastric mucosa. Hemorrhagic shock was induced through a withdrawal of 20% of estimated blood volume followed by retransfusion 60 min later. In control groups no shock was induced. Reflectance spectrophotometry and laser Doppler were performed at the gastric and oral surface. Oral microcirculation was visualized by incident dark field imaging. Systemic hemodynamic parameters were recorded continuously. Statistics were performed using a two-way-ANOVA for repeated measurements and post hoc analysis was conducted by Bonferroni testing (p < 0.05). Results The gastric μHbO2 decreased from 76 ± 3% to 38 ± 4% during hemorrhage in normocapnic animals. Local hypercapnia ameliorated the decrease of μHbO2 from 78 ± 4% to 51 ± 8%. Similarly, the oral μHbO2 decreased from 81 ± 1% to 36 ± 4% under hemorrhagic conditions and was diminished by local hypercapnia (54 ± 4%). The oral microvascular flow quality but not the total microvascular blood flow was significantly improved by local hypercapnia. Local O2-application failed to change microvascular oxygenation, perfusion or flow quality. Neither CO2 nor O2 changed microcirculatory parameters and macrocirculatory hemodynamics under physiological conditions. Discussion Local hypercapnia improved microvascular oxygenation and was associated with a continuous blood flow in hypercapnic individuals undergoing hemorrhagic shock. Local O2 application did not change microvascular oxygenation, perfusion and blood flow profiles in hemorrhage. Local gas application and change of microcirculation has no side effects on macrocirculatory parameters.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Lea Weber
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Eva Maleckova
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| |
Collapse
|
4
|
Hof S, Marcus C, Kuebart A, Schulz J, Truse R, Raupach A, Bauer I, Flögel U, Picker O, Herminghaus A, Temme S. A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models. Front Med (Lausanne) 2022; 9:869372. [PMID: 35652064 PMCID: PMC9149176 DOI: 10.3389/fmed.2022.869372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Impaired oxygen utilization is the underlying pathophysiological process in different shock states. Clinically most important are septic and hemorrhagic shock, which comprise more than 75% of all clinical cases of shock. Both forms lead to severe dysfunction of the microcirculation and the mitochondria that can cause or further aggravate tissue damage and inflammation. However, the detailed mechanisms of acute and long-term effects of impaired oxygen utilization are still elusive. Importantly, a defective oxygen exploitation can impact multiple organs simultaneously and organ damage can be aggravated due to intense organ cross-talk or the presence of a systemic inflammatory response. Complexity is further increased through a large heterogeneity in the human population, differences in genetics, age and gender, comorbidities or disease history. To gain a deeper understanding of the principles, mechanisms, interconnections and consequences of impaired oxygen delivery and utilization, interdisciplinary preclinical as well as clinical research is required. In this review, we provide a "tool-box" that covers widely used animal disease models for septic and hemorrhagic shock and methods to determine the structure and function of the microcirculation as well as mitochondrial function. Furthermore, we suggest magnetic resonance imaging as a multimodal imaging platform to noninvasively assess the consequences of impaired oxygen delivery on organ function, cell metabolism, alterations in tissue textures or inflammation. Combining structural and functional analyses of oxygen delivery and utilization in animal models with additional data obtained by multiparametric MRI-based techniques can help to unravel mechanisms underlying immediate effects as well as long-term consequences of impaired oxygen delivery on multiple organs and may narrow the gap between experimental preclinical research and the human patient.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Zhang M, Zhang B, Chen R, Li M, Zheng Z, Xu W, Zhang Y, Gong S, Hu Q. Human Norovirus Induces Aquaporin 1 Production by Activating NF-κB Signaling Pathway. Viruses 2022; 14:842. [PMID: 35458572 PMCID: PMC9028284 DOI: 10.3390/v14040842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Human norovirus (HuNoV) is one of the major pathogens of acute nonbacterial gastroenteritis. Due to the lack of a robust and reproducible in vitro culture system and an appropriate animal model, the mechanism underlying HuNoV-caused diarrhea remains unknown. In the current study, we found that HuNoV transfection induced the expression of aquaporin 1 (AQP1), which was further confirmed in the context of virus infection, whereas the enterovirus EV71 (enterovirus 71) did not have such an effect. We further revealed that VP1, the major capsid protein of HuNoV, was crucial in promoting AQP1 expression. Mechanistically, HuNoV induces AQP1 production through the NF-κB signaling pathway via inducing the expression, phosphorylation and nuclear translocation of p65. By using a model of human intestinal epithelial barrier (IEB), we demonstrated that HuNoV and VP1-mediated enhancement of small molecule permeability is associated with the AQP1 channel. Collectively, we revealed that HuNoV induced the production of AQP1 by activating the NF-κB signaling pathway. The findings in this study provide a basis for further understanding the significance of HuNoV-induced AQP1 expression and the potential mechanism underlying HuNoV-caused diarrhea.
Collapse
Affiliation(s)
- Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Binman Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Zheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yifan Zhang
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|